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Abstract

Light Affine Logic (LAL) is a system due to Girard and Asperti capturing the complexity class P
in a proof-theoretical approach based on Linear Logic. LAL provides a typing for lambda-calculus
which guarantees that a well-typed program is executable in polynomial time on any input. We prove
that the LAL type inference problem for lambda-calculus is decidable (for propositional LAL). To
establish this result we reformulate the type-assignment system into an equivalent one which makes
use of subtyping and is more flexible. We then use a reduction to a satisfiability problem for a system
of inequations on words over a binary alphabet, for which we provide a decision procedure.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Functional languages have been advocated as languages amenable to reasoning on pro-
grams and specifications. Although a lot of work has been done on techniques for checking
qualitativeissues such as the fact that a program meets its specification, there seems to have
been less success onquantitativeones such as how to structurally ensure that a program
fits a certain time or space complexity bound. Maybe this means that some conceptual tools
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are still needed on the foundational side, lambda-calculus, logic and rewriting systems, for
handling quantitative aspects.

Since the last decade quite a lot of progress was done in the field ofImplicit computational
complexityfor defining languages and calculi in which all programmable functions have a
given complexity (e.g.[6,14–16,19]). Recall that the original goal of Implicit computational
complexity is to give machine-independent characterizations of complexity classes, where
the control over resources is not managed by explicit measures (e.g. clock) but implicit in
the program constructs or the definitions of the calculus considered. Some of the languages
mentioned are based on restrictions on the use of structural recursion, others on proof-
theoretical methods or on type systems.

Here we are interested inLight Affine Logic(LAL) [1,2], a variant of Linear Logic with
a polynomial time cut-elimination procedure (it was obtained as a simplification of Light
LinearLogic [14]) and which characterizes the class P in the proofs-as-programs paradigm.
Light logic has been studied under various aspects: as a logical system[2,14], as a variant of
lambda-calculus via the Curry–Howard isomorphism[23] and semantically[5,17,21,24];
some extensions likelight set theory[14,26]or a non-deterministic variant[20] have also
been investigated. However the system is quite delicate to handle and therefore we think
it is important to determine how much of the programming task in this setting could be
automated.

In particular LAL can be used as a type system for ordinary lambda-calculus, ensuring the
property that if a program is well-typed then it is PTIME. In this way type search provides
a way to statically guarantee a time upper bound on a program. The type derivation can
then be seen as acertificatethat the program can be executed within the bound on any
input. Note that this is a strong property that could not be checked simply by pragmatically
executing the program, because what is given is a bound relative to a (possibly) infinite set of
input values. Note also that even though we are using lambda-calculus as source language,
the polynomial bound isnot ensured on ordinary lambda-calculus reduction, that is to say
�-reduction, but on the compilation of the lambda-calculus program into aproof-net(see
[2]) and its execution by proof-net normalization.

Actually here we focus on type inference for propositional (quantifier free) LAL which
is not very expressive. We consider it as an important first step though because this is the
core of LAL and polymorphism brings difficulties of its own for type inference (recall type
inference for system F is undecidable,[27]). We do not know whether type inference for
second-order LAL is decidable. An alternative to polymorphism could be to extend the
lambda-calculus language with functions on basic types and iterator constants (in the style
of the languages in[6,16]). This is left for future work, together with the investigation of
the complexity of type inference.

Related work. We already considered the problem of LAL typability in[3] but in a restricted
setting: the term had to be in normal form and a type was fixed for the argument. With these
conditions we had to deal with Presburger arithmetic constraints.

Coppola and Martini studied in[8] type inference in Elementary Affine Logic (EAL),
a system corresponding to Kalmar elementary complexity (see also[10]), for which they
showed decidability of type inference. Their algorithm was based on the idea of first propos-
ing a simple type derivation for the term and then interpolating this derivation with modality
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rules in order to find a suitable EAL derivation (in the line of the works on linear decorations
as[11]). The approach we follow here is closer to that proposed by Coppola and Ronchi
della Rocca in[9], where they introduce a notion of principal typing and give another type
inference algorithm for EAL: propose a pattern of type-derivation with free parameters and
express its correctness by a system of constraints (linear equations over integers in the case
of EAL).

A preliminary version of the present work appeared as[4].

Outline. After recalling the principles of LAL in Section3 we give the natural LAL type
assignment system for lambda-calculus (Section4), define the subtyping relation and pro-
pose our reformulation of type-assignment with subtyping. Words appear as modalities in
types allowing for the control of duplication. We then consider abstract derivations and
abstract terms (Section6), where a degree of freedom is left for the modalities by leaving
some free word parameters. An abstract derivation can be instantiated into a plain deriva-
tion provided some constraints on parameters (words) are satisfied (derivation instantiation
problem). We show how typability can be reduced to the derivation instantiation prob-
lem for some derivations in canonical form. In Section7 we establish how to solve the
constraints to decide the previous problem. This amounts to solve systems of inequations
on words.

Acknowledgement. We wish to thank Roberto Amadio for suggesting the use of subtyping
for LAL typing, and François Pottier and Kazushige Terui for useful discussions. We are
also indebted to the anonymous referees for many accurate comments and suggestions.

2. Preliminaries

We give in this short section a few preliminary definitions and notations.
Lambda-calculus terms are defined by:t ::= x | �x. t | (t t). We denote the set of free

variables of a termt by FV (t).
We denote byt{u1/x1, . . . , un/xn} (or simply t{ui/xi} if there is no ambiguity) the

simultaneous substitution of termsui for variablesxi (1� i�n) in term t (with the usual
discipline for avoiding variable capture). In the case whereui = u for 1� i�n we denote
it ast{u/x1, . . . , xn}.

We denote by→ the one-step�-reduction relation on terms, defined as the contextual

closure of the relation
0→ given by:((�x.t) u)

0→ t{u/x}. Then
∗→ denotes the reflexive

and transitive closure of→.
We denote by

�∗→ the�-reduction relation on terms, defined as the contextual, reflexive

and transitive closure of the relation
�→ given by:�x.(t x)

�→ t if x /∈ FV (t).
Typing judgements in various systems will be denoted by��t : A, where� is a set of

type declarations� = {x1 : A1, . . . , xn : An} and thexis are distinct. Then�(y) is defined
iff y = xi for 1� i�n, and then�(y) = Ai . Moreover�\{y} will stand for� if y 
= xi
(1� i�n) and�\{xi : Ai} if y = xi .

We will consider words over a finite alphabet, with concatenation of words with word
s′ denoted as:ss′. The empty word is written�. The length of a words is denoted as|s|.
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We will denote lists as〈a1, . . . , an〉 and the empty list as�. Adding an elementa at the
beginning or end of a listl will be respectively written asa :: l andl :: a. Appending listl′
to list l will be written asl :: l′.

3. Introduction to light affine logic

We start with an informal introduction to the principles of Light affine logic (LAL).
Throughout this paper, by Light affine logic we mean in fact Intuitionistic light affine logic.

LAL controls the complexity of reduction of a term (or proof) by enforcing a strict
discipline on the duplication of subterms. It relies on two key features:

(1) stratification, (2) two modalities (calledexponentials): ! and §.

Point (1) means that a typed term is organized into strata or levels. This organization is static:
if a subterm is initially at leveli, its reducts will remain so during execution. Moreover if
a termt is fed with an argumenta (Figs.1 and2) then in the resulting termb, level i will
only depend on the levelsj for j� i of t anda (see[5] for a semantical interpretation of this
property).

A1

An

B...

inputs (free variables) output

t

Fig. 1. Representation of a typed term.

Fig. 2. Stratification.
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Fig. 3. ! allows being duplicated.

Fig. 4. § enables identification of variables.

How do we change level in a term? This is done with the modalities: applying a! to a
typed termt : B at level i we get a term at leveli + 1; this term of type!B can then be
duplicated during reduction (Fig.3). The! modality therefore has two roles: switching level
and allowing duplication.

Another system is based on stratification and the! modality, Elementary Affine Logic; it
guarantees elementary complexity for the terms. LAL needs to be more strict to cut down the
complexity to polynomial time. Hence it requires that for applying! to a termt (thus making
t duplicable) the term should haveat most one free variable. This is a way of preventing
chains of duplications leading to exponentially long sequences of reductions.

However one has to switch levels also for terms with more than one free variable. This
is what the new modality § is introduced for. Applying § to a typed termt : B at leveli we
get a termt ′ : §B at leveli + 1, but this new term isnot duplicable. Still, one advantage
of t ′ : §B is that it allows identification of free variables (with same types) and in this way
enables the duplication of other terms (Fig.4).
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4. Typing in LAL

4.1. Type system

We want to type lambda-terms in LAL. LAL types are given by the following grammar
(over a denumerable set of propositional variables):

T := � | T�T | !T | §T .

We stick here to the implicational fragment of LAL (without⊗) for simplicity, but consider-
ing the case with⊗ would not add much difficulty.The! (bang) and § (neutral) connectives
are calledexponentials.

We use a natural deduction presentation of the type-assignment system in the lines of
[7,8] (it can also be presented in a sequent calculus style as in[1,3]). This formulation is
not as well adapted as that ofproof-nets[2,14] to the study of reduction, but it is easier to
understand for typing. The rules are given in Fig.5.
Conditions with Fig.5:
(1) Theais belong to{!,§} and satisfy: ifn�2 thena0 = § and ifa0 = ! andn = 1 then
a1 = !.

The rule(prom) is calledpromotion. If a0 = ! (resp.a0 = §) we say it is a!-promotion
(resp. §-promotion). Note that condition (1) includes the restriction described in Section3:
one can apply a!-promotion only if the term has at most one free variable.

The rule(prom) is important as it is the only one to change the level : the level of termt
increases by 1; this is displayed on the type by adding the exponentiala0.

A particular case of application of(prom) is when then left premises�i�ti : aiAi are of
the formxi : aiAi�xi : aiAi ; in that case we can simply write the application of the rule as

x1 : A1, . . . , xn : An�t : B
x1 : a1A1, . . . , xn : anAn�t : a0B

(prom).

Observe that this rule acts both on the type of the term and on those of the free variables,
adding one modality to each. In the case of §-promotion, ifn�2 and saya1A1 = a2A2 = !A
for example we can then apply a contraction onx1 andx2.

We calldepthof a derivationD the maximal number of r.h.s. premises of(prom) rules
in branches ofD.

x : A�x : A (var)
��t : B

�, x : A�t : B (weak)

�1�t1 : A�B �2�t2 : A
�1,�2�(t1t2) : B (appl)

�, x : A�t : B
���x.t : A�B

(abst)

�1�t1 : a1A1 · · · �n�tn : anAn x1 : A1, . . . , xn : An�t : B
�1, . . . ,�n�t{t1/x1, . . . , tn/xn} : a0B

(1)(prom)

��t ′ : !A x1 : !A, . . . , xn : !A,��t : B
�,��t{t ′/x1, . . . , xn} : B (contr)

Fig. 5. Type assignment LAL.
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Recall that proof-nets are a graph syntax for proofs in Linear Logic[13] and related
systems (we will not give here the definition of proof-nets). To any LAL derivationD an
LAL proof-netRD [2] can be associated. The rule(prom) corresponds to introduction of a
box (either!-box or §-box) in the proof-net. Intuitively the derivation of the r.h.s. premise
of the rule is enclosed in the box. Thedepthof a proof-netR is the maximal number of
nested boxes inR; thus the depth ofD is by definition the same as the depth ofRD.

We have:

Lemma 1 (Substitution). If the judgments��u : A andx : A,��t : B are LAL-derivable
then so is the judgment�,��t{u/x} : B.

Proof. By induction on the derivation ofx : A,��t : B. �

Lemma 2. If ��t : A is derivable andt0 is the normal form of t for�-reduction, then
��t0 : A is derivable.

Proof (Sketch). Consider a proof-netR corresponding to the derivation of��t : A and let
R0 be its normal form for cut-elimination. Then an LAL derivation can be retrieved from
R0 and the corresponding termt0 is obtained by�-reduction fromt. Finally, asR0 is normal
the termt0 is in normal form with respect to�-reduction. �

Note that Lemma2 states a weaker property than subject-reduction. Subject-reduction
itself, as pointed out by Terui[25] is not satisfied by LAL with respect to�-reduction.
This is essentially due to the fact that the(contr) rule allows the use of sharing in type
derivations. Here is an example showing that typing is not preserved by→ (one step of
�-reduction):

consider the termt = [(a (x (I y))) (x (I y)], with I = �z.z.
We havet → t1, wheret1 = [(a (x y)) (x (I y)].
The judgementx : A�!B, y : A, a : !B�!B�C�LALt : C is derivable, but the same

judgement is not valid fort1. This is because for typingt one can use a sharing of the two
subterms(x (I y)), which is not possible fort1. Note that LAL subject-reduction is however
satisfied by light affine lambda calculus[23], where sharing is explicit.

LAL can be seen as a refinement of simple types. Indeed if we denote by intuitionistic
logic (IL) the system of simple types, there is a forgetful map[.] : LAL → IL, obtained
by erasing exponentials and replacing� with →. At the level of derivations we have:

Lemma 3. If �LALt : A then�ILt : [A].

The main property of LAL-typed terms is the following one, which is a consequence of
the results of[1,14]:

Proposition 4. If �LALt : A�B is obtained by an LAL derivationD1, then there exists a
polynomial P such that:
for any derivationD2 of a judgement�LALu : A, if we denote byD the derivation�(t u) : B
obtained fromD1 andD2 and by R the corresponding proof-net, then R can be normalized
in P(|u|) steps, where|u| denotes the size of u.



8 P. Baillot / Theoretical Computer Science ( ) –

ARTICLE IN PRESS

Moreover the�-normal form of the lambda-term(t u) can be extracted from the normal
formR0 of R.

Remark 1.
(1) It follows from this Proposition that ifAandBare data types thent denotes a polynomial

time function, because the polynomial step reduction of the proof-netRcan be done in
polynomial time.

(2) The degree of the polynomial bounding the number of steps of the reduction ofRonly
depends on the depth ofR. As here we are considering the quantifier-free fragment of
LAL this depth is already given by the typeA�B.

(3) Instead of proof-nets one can also use light affine�-calculus[23] with the same bound
on the number of reduction steps.

With second-order quantifiers there is also a completeness result (see[2,22]).
It is important to note that the statement of Proposition4 refers to the number of nor-

malization steps of proof-nets and not to the�-reduction of the lambda-term(t u) itself.
As pointed out in[2], LAL-typed lambda-terms can have exponentially long�-reduction
sequences. Here is an example (adapted from[2]):

Consider the term:t = �x.�y.[[p1 (x y)](x y)] wherep1 = �a.�b.a. It can be typed as:
�t : !(!A�!A)�!(!A�!A).

Now consider the family of terms:Un = (t . . . (t (t I )) . . .) with n�0 applications oft,
and whereI = �x.x. Let Tn = (Un I).

TakingA = ���, the termTn can be typed as�Tn : !!(���) and the derivation has
depth 2 (so this depth is independent ofn). The termTn reduces toI and we define the
reduction sequencesn by
s0 is given by:(I I ) → I

andsn+1 is defined inductively by
Tn+1 → [(�y.[p1 (Un y)(Un y)]) I ]

→ (p1 Tn Tn)
sn→ (p1 I Tn) (reduction of l.h.s. argument)
sn→ (p1 I I ) (reduction of r.h.s. argument)
→ I.

Thus, denoting by|sn| the number of steps of the sequencesn we get|sn+1|�2|sn|, and
so |sn|�2n. The proof-net corresponding to the type derivation ofTn however normalizes
in a number of steps polynomial in|Tn|, hence polynomial inn.

The proof-nets can be seen as an intermediate language into which LAL-typed lambda-
terms are compiled in order to be executed efficiently. Note that the proof-net of Proposition
4 is actually obtained from the type derivation of the term. Thus the LAL type derivation
does not only ensure that the programcanbe executed with a certain bound but also provides
the necessary information to actually compile the term and perform the execution.

4.2. Modalities and subtyping

When typing lambda-terms we have to apply to certain types several! / §. For instance
we might want to identify two variablesx1, x2 in a subtermt : A, which leads us to give
type §A to t, and then maket duplicable, which requires giving it the type!§A.
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Observe that ift can be typed with!A then it can also be typed with §A; it is sufficient to
replace in the derivation a!-promotion by a §-promotion. Similarly a term with type!!§A
can also be attributed the type!§§A or §!§A for example. More generally, to study typability
it is useful to be able to state which types can be replaced by which ones. For that we will
define a partial order on words over{!,§}.

We considerL = {!,§}∗ and call its elementsmodalities. We define the order4 onL as
the least reflexive relation onL satisfying:

! 4 §,
au 4 a′u′ with a, a′ ∈ {!,§} iff (a4a′ andu4u′),
s 4 � iff s = �.

Note that this relation is transitive by definition and thats4s′ implies|s| = |s′|. Fora ∈ {!,§}
we writeak for a . . . a with k repetitions.

By applying repetitively the(prom) rule (in the casen = 0 orn = 1) one can derive the
following rule, fors0, s1 in L such thats04s1:

x1 : A1�t : B
x1 : s0A1�t : s1B

� t : B
�t : s1B

.

For any value ofn andsi in L (1� i�n) of lengthk�1 we can derive

x1 : A1, . . . , xn : An�t : B
x1 : s1A1, . . . , xn : snAn�t : §kB

.

We call these derived rulesmultiple promotionsand denote them by(mprom).
We adopt the convention of identifying the typesT and�T , where� is the empty word.

We will consider variables for words, for which we distinguish two classes: (i)bicolored
variables, denoted asu, v,w . . . are valued inL,
(ii) monocoloredvariables, denoted asp, q, r . . . are valued in{§}∗.
Let these classes be denoted respectively asVb andVm, andV = Vb ∪ Vm. Of course a
monocolored word is equivalently given by its length.

We consider the reflexive and transitive relation on types given by

u� � u′� iff u4u′,
u(A1�A2) � u′(A′

1�A′
2) iff u4u′, A′

1�A1 andA2�A′
2.

In fact we have:

Lemma 5. If A1�A2 then there exists a term t such thatx : A1�LALt : A2 and t
�∗→ x,

so�x.t
�∗→ �x.x.

The idea of this lemma is that ifA1�A2 thenA1�A2 is provable in LAL, not by a mere
axiom in general but by an expansion of axiom where only promotion steps are modified,
which gives as lambda-term an�-expansion of identity.

Proof (Lemma5). The proof is by induction overA1. If A1 = u1A
′
1 andA2 = u2A

′
2 with

u14u2 andA′
1�A′

2, then by induction hypothesis:x : A′
1�LALt : A′

2 with t
�∗→ x. By

applying the(mprom) rule we described before we get:x : A1�LALt : A2.
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x : A1�x : A2
A1�A2 (var)

��t : B
�, x : A�t : B (weak)

�1�t1 : A1�B �2�t2 : A2

�1,�2�(t1t2) : B A2�A1 (appl)
�, x : A�t : B
���x.t : A�B

(abst)

�1�t1 : a1A
′
1 · · · �n�tn : anA′

n x1 : A1, . . . , xn : An�t : B
�1, . . . ,�n�t{ti /xi } : a0B

aiA
′
i
�a0Ai (prom)(1)

��t ′ : !A x1 : A1, . . . , xn : An,��t : B
�,��t{t ′/x1, . . . , xn} : B !A�Ai (contr)

Fig. 6. Type assignment LALs.

Consider the caseA1 = B1�B2, A2 = B ′
1�B ′

2. We have:B24B
′
2, B ′

14B1. By i.h.

we gety : B ′
1�LALt1 : B1 andx : B2�LALt2 : B ′

2 with t1
�∗→ y, t2

�∗→ x. So we
havez : B1�B2, y : B ′

1�LAL(z t1) : B2. By Lemma1 we thus get thatz : B1�B2, y :
B ′

1�LALt2{(z t1)/x} : B ′
2, and applying rule(abst) we havez : B1�B2�LALt : B ′

1�B ′
2,

for t = �y.t2{(z t1)/x}.
Finally observe that by the hypothesis ont1 andt2 we have:

�y.t2{(z t1)/x} �∗→ �y.(z t1)
�∗→ �y.(z y)

�∗→ z.
Therefore the induction hypothesis is valid forA1�A2, which ends the proof. �

Lemma5 suggests considering� as a subtyping relation. Now we can reformulate our
type-assignment system using this relation: this is the system LALs (LAL with subtyping)
defined in Fig.6.

Conditions with Fig.6:
(1) if n�2 thena0 = §.
Observe that LAL rules can be seen as particular cases of LALs rules. We have:

Proposition 6. If ��LALt : A then��LALst : A.

Conversely, if ��LALst : A then there exists a termt ′ such thatt ′ �∗→ t and��LALt
′ : A.

Proof. As LAL rules are particular instances of LALs rules, it is straightforward that
��LALt : A implies��LALst : A.

For the other property we proceed by induction over derivations of��LALst : A.
• if the derivation is only an application of (var) rule,t = x, � = x : A1 with A1�A, we

apply Lemma5 and get a derivation ofx : A1�LALt
′ : A with t ′ �∗→ x.

• the cases of rules (weak), (appl), (abst) do not raise any problem.
• if the derivation is obtained by a (contr) rule from two LALs derivationsD1 andD2

respectively of��t1 : !A and x1 : A1, x2 : A2,��t2 : B (we assumen = 2 for
simplicity); the conclusion is

�,��t2{t1/x1, x2}.

By i.h. we get two LAL derivationsD′
1 andD′

2 with termst ′1, t ′2 andt ′i
�∗→ ti for i = 1,2.

By Lemma5 as !A�Ai for i = 1,2 we get termswi with wi
�∗→ xi and such that
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x′
i : !A�LALwi : Ai holds. By using these two judgments, the judgmentx1 : A1, x2 : A2,

��t2 : B and Lemma1 (two times) we get
x′

1 : !A, x′
2 : !A,��LALt

′
2{w1/x1, w2/x2} : B.

Finally applying rule(contr) to this last judgment and��t1 : !Awe obtain:�,��LALt
′′ :

B, for t ′′ = (t ′2{w1/x1, w2/x2}){t1/x′
1, x

′
2}.

As t ′2
�∗→ t2, wi

�∗→ x′
i we have

t ′2{w1/x1, w2/x2} �∗→ t2{x′
1/x1, x

′
2/x2, }so t ′′ �∗→ t2{t1/x1, x2}.

• the case of a (prom) rule is handled in a similar way to that of (contr).�

This proposition is only stated to relate formally LALs to LAL. What is important is that
t ′ is extensionally equivalent tot. In practice one could execute directly LALs typed terms
with the same complexity bound as LAL typed terms by adapting in a straightforward way
the light lambda-calculus introduced by Terui in[23] (basically it would require allowing
substituting a §-typed variable by a!-typed term, which does not alter the polynomial
bound).

Our main motivation for considering LALs instead of LAL is to make type inference
easier. However note that even before considering inference, as a type system LALs is more
flexible than LAL:
(1) typing is more versatile: a typed term can be applied to more arguments,
(2) the contraction rule is more general: identified variables do not need to have the same

type.
By (1) we mean that, for example: in LAL a termt : (!A�§B)�C cannot be directly
applied to an argumentu : §A�!B; this needs firstretyping u or t, for instance retyping
u with type !A�§B (thus losing some information onu). In LALs the application can be
done with the actual types. Therefore LALs typing allows for a more general usage of typed
terms.

5. Constraints

Before going on with typing, let us define the constraints we will need to consider. An
inequation on words Iis a constraint of the following form:

a1 . . . ak4ak+1 . . . al (I ),

where theais are constants or word variables:ai ∈ V ∪ L.
We denote bys1, s2 . . . words overV ∪ L, so an inequation is of the forms14s2. An

inequation systemS is a finite conjunction of inequations:S = I1 ∧ . . . ∧ IN .
Given I (resp.S), Par(I ) (resp.Par(S)) is the set of word variables (orparameters)

occurring inI (resp.S). An instantiation� of S is a map� : Par(S) → L such that
for any p in Par(S) ∩ Vm, �(p) ∈ {§}∗ (� is compatible with colors). We also denote
by � the extension to(Par(S) ∪ L)∗ given by:�(a) = a if a ∈ L and�(a1 . . . ak) =
�(a1) . . .�(ak).

An instantiation� of S = I1 ∧ · · · ∧ IN is a solution of S if for any 1�j�N the
inequationIj holds when each variablea is replaced by�(a).
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Example 1. ConsiderS given by

u1§u2 4 p1u3!,
u5u4 4 u2§.

The instantiation� given by�(p1) = §,�(u1) = �(u3) = �,�(u2) = �(u4) = �(u5) = !,
is a solution ofS.

Remark 2. Note that equations over words (on the binary alphabet) with concatenation (as
considered e.g. in[12]) can be seen as a special case: an equations1 = s2 can be encoded
as(s14s2) ∧ (s24s1).

6. Abstract typing

Finding an LALs type derivation for a termt brings up two difficulties:
• finding the general form of the derivation, in particular where to do the contractions and

the (multiple) promotions;
• working outhow manymodalities to apply at each multiple promotion and choose between

! and § for each.
To address the second point we will use types with variables instead of modalities (called
abstract types) and then try to find suitable modalities to instantiate the variables.

As to the first point we will show that we can define a notion ofcanonical term construction
and that each term has a finite number of such constructions (Section6.2). After that we
will be ready to describe our type inference method.

6.1. Abstract types

Let us callabstract typestypes built with word variables:T := �| T�T | aT , wherea
belongs toV ∪ L. Remember that we identify�T andT.

As with LAL there is a forgetful map from abstract types to simple types, which we
denote again as[.]. Denote byPar(T ) the set of word variables appearing inT.

Given an abstract typeA we denote bŷA the abstract type obtained by removing the
external modalities and word variables ofA: Â is defined inductively by

Â = A if A = � orA1�A2,

(̂aA) = Â.

Given aninstantiation� : Par(T ) → L compatible with colors, we define�(T ) as the
LAL type obtained by replacing inT word variables by their image:

�(�) = �,
�(T1�T2) = �(T1)��(T2),

�(aT ) = �(a)�(T ).

Inequations on abstract types. Given two abstract typesT1 andT2, a solution of the inequa-
tion T1�T2 is an instantiation� : Par(T1) ∪ Par(T2) → L such that�(T1)��(T2).
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T (T1�T2) = false if [T1] 
= [T2]
T (s�� s′�)) = (s4s′)

T (s(A1�A2)� s′(A′
1�A′

2)) = (s4s′) ∧ T (A′
1�A1) ∧ T (A2�A′

2).

Fig. 7. MapT .

(var), (weak), (abst) as in Fig.6.
�1�t1 : s(A1�B) �2�t2 : A2

�1,�2�(t1t2) : B s = �, A2�A1 (appl)

�1�t1 : A′
1 · · · �n�tn : A′

n x1 : A1, . . . , xn : An�t : B
�1, . . . ,�n�t{ti /xi } : vB A′

i
�vAi (prom) (2)

��t ′ : A x1 : A1, . . . , xn : An,��t : B
�,��t{t ′/x1, . . . , xn} : B A� !uÂ, !uÂ�Ai (contr)

Fig. 8. Abstract typing: LALa.

Fig. 7 defines a mapT from inequations on abstract types to systems of inequations on
words (it follows directly from the definition of the subtyping relation). For a technical
reason we will need to consider thatT can also be applied to inequations on words (acting
as identity):T (s14s2) = (s14s2).

Lemma 7. A map� is a solution of the set of inequations on abstract types{A1�A2, . . . ,

A2k+1�A2k+2} iff it is a solution of∧ki=0T (A2i+1�A2i+2).

An abstract type derivation(a.t.d,)D is a derivation of judgements with abstract types,
built from the rules in Fig.8.
Conditions:
in (prom): (2) ifn�2 thenv ∈ Vm elsev ∈ Vb.
in (contr):u ∈ Vb and isfresh(does not appear in the rest of the derivation).

In fact all we want to impose for(contr) is thatA is of the form!A′, for someA′, and
thatA�Ai for 1� i�n. This is equivalent to the solvability ofA� !uÂ�Ai with a fresh
u. Condition (2) on(prom) is analogous to the condition (1) we had for promotion in LAL
and LALs.

The inequalities associated to the rules are not seen as conditions for the application of
the rule as before, but as constraints which are added to the derivation. Note that for (appl)
we use a constraint directly expressed on words:s = �, which can be equivalently written
ass4�.

The set of word variables occurring inD is denoted byPar(D) and given an instantiation
� compatible with colors we define�(D) as expected. An instantiation� is asolutionof
D if �(D) corresponds to a valid LALs type derivation. Hence we can state:

Problem 1(A.t.d. instantiation problem).Given an abstract type derivationD, does it have
a solution�?
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x : A�x : A (var)
��t : B

�, x : A�t : B (weak)

�1�t1 : A → B �2�t2 : A
�1,�2�(t1t2) : B (appl)

�, x : A�t : B
���x.t : A → B

(abst)

�1�t1 : A1 · · · �n�tn : An x1 : A1, . . . , xn : An�t : B
�1, . . . ,�n�t{ti /xi } : B (prom)

��t ′ : A x1 : A, . . . , xn : A,��t : B
�,��t{t ′/x1, . . . , xn} : B (contr)n�2

Fig. 9. Type assignment ILS.

x�x
(var)

��t

�, x�t
(weak)

�1�t1 �2�t2

�1,�2�(t1t2)
(appl)

�, x�t

���x.t
(abst)

�1�t1 · · · �n�tn x1, . . . , xn�t

�1, . . . ,�n�t{ti /xi }
(prom)

��t ′ x1, . . . , xn,��t

�,��t{t ′/x1, . . . , xn}
(contr)n�2

Fig. 10. Rules for term constructions.

We will address this problem for a restricted class of abstract type derivations that we
will define in the next section (canonical derivations).

6.2. From term constructions to abstract derivations

From now on we consider LALs derivations with multiple promotions. IfD is an LALs
derivation, we denote by[D] the tree of judgements obtained by replacing each LAL formula
A by [A]. Then[D] is a simple type derivation that we callsimple type skeletonof D. We
want to give a direct description of simple type skeletons.

Given a termt let us denote byFV (t) the free variables occurring int. We consider the
typing rules for simple types of Fig.9, with the conditions:
(1) in rule(contr) we require thatn�2 and thatx1, . . . , xn belong toFV (t),
(2) in (prom), all xi should belong toFV (t).
We call this set of rules ILS (intuitionistic logic with sharing). Derivations in this system
will allow us to handle simple type skeletons of (some) LALs derivations.

We might even want to keep less information from LALs derivations and erase types
altogether. For that we consider trees of judgements of the form��t , where� is a set of
variables andt is a term built from the rules in Fig.10 (adapted from ILS rules) and with
conditions (1) and (2). We call such a tree aterm construction. Note that to any ILS or LALs
derivationD we can associate a term construction by erasing all type annotations; we will
denote it asT (D).
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Let us fix some vocabulary for LALs derivations, ILS derivations and term constructions.
We say an application of the(prom) rule isbasicif all ti are variables and all�i have only
one variable. We say an occurrence of(weak) rule D is terminal if it is the last rule ofD
or if it is followed only by a sequence of(weak) rules.

Definition 1. A term construction is canonical if a basic(prom) is never r.h.s. premise of
another(prom) and each(weak) rule is either terminal or followed by an(abst) rule on
the weakened variable. An ILS (resp. LALs) derivation is canonical if the associated term
construction is canonical.

We have:

Lemma 8. If ��LALst : A then there exists an LALs derivationD of this judgement(pos-
sibly using multiple promotions) such that[D] is a canonical ILS derivation.

Proof (Sketch). Consider an LALs derivationD of ��t : A. If D contains an occurrence of
(weak) which is not terminal and not followed by an(abst) rule on the weakened formula,
then we can commute this rule top-down with other rules until it meets either:
(i) a (prom) rule,

(ii) a (contr) rule on the weakened formula
or (iii) an (abst) rule on the weakened formula or a terminal(weak) rule.

In case (i) we remove the premise�i�ti : Ai of (prom) corresponding to the weakened
formulaAi and add instead(weak) rules on�i after (prom). In case (ii) we remove the
(weak) rule, which decreases the arityn of the (contr) rule. Repeating this procedure we
eventually get an LALs derivationD1 such that any(weak) rule is terminal or followed by
an(abst) rule on the weakened formula.

The derivationD1 can still contain(contr) rules of arityn = 1. For such an occurrence
(contr)0 one can perform commutations of rules until the r.h.s. premise of(contr)0 is a
(var) rule; in this last case we remove both(contr)0 and the(var) rule. This way we obtain
an LALs derivationD2 satisfying the same conditions asD1 and such that all its(contr)
rules have arityn�2. It follows thatD2 satisfies conditions (1) and (2) from above and
[D2] is an ILS derivation.

Finally we turnD2 into an LALs derivationD3 such that[D3] is a canonical ILS derivation
by replacing if necessary some consecutive promotions by one multiple promotion.�

Proposition 9. There is an algorithm that given a term t gives all canonical term construc-
tions ofFV (t)�t ; there is a finite number of such canonical derivations.

A proof of this proposition is given in AppendixA.

Definition 2. We say a term constructionT1 of x1, . . . , xn�t admits ILS type judgement
x1 : A1, . . . , xn : An�t : B if there is an ILS derivationD of this judgement such that
T (D) = T1.
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� I y, z1, z2�(y z1 z2)

y�t
(contr)

Fig. 11. Example for Remark3.

Proposition 10. The term constructions admit the principal typing property(for ILS types):
letT1 be a term construction, then it admits an ILS type judgementx1 : A1, . . . , xn : An�t :
B (called its principal type) such that any��t : C is an ILS type judgement ofT1 iff it is of
the formx1 : 	A1, . . . , xn : 	An�t : 	B, where	 is a substitution on type variables.

Remark 3. Note that the principal type of a term constructionT1 of ��t is not necessarily
the principal type oft, because of sharing ((contr) rule). For instance consider the term
t = (y I I ). It has principal typey : (�1 → �1) → (�2 → �2)���t : �. However ifT
denotes the term construction oft ending with the rule of Fig.11 (and the rest of the term
construction done in the natural way), thenT has principal typey : (�1 → �1) → (�1 →
�1) → ��t : �.

Finally we have:

Proposition 11. Assume there is an LALs derivationD of ��t : A with associated term
constructionT1 = T (D). If T1 admits ILS principal type��t : B then there exists an LALs
derivationD′ with conclusion�′�t : A′ such that[�′] = �, [A′] = B andT (D′) = T1.

A result of this kind was proved in[9] for elementary affine logic (EAL) type derivations.
However in the system EAL considered in this paper sharing was not allowed and we cannot
here adapt directly this result to our purpose. Therefore we give a self-standing proof of
Proposition11 in AppendixB, using some techniques from[9].

Given a simple typeAwe define its setf d(A)of free decorations in LALain the following
way:
• if A is an atomic type� thenf d(A) = {u�, u ∈ Vb},
• if A = A1 → A2 we take:
f d(A) = {u(A1�A2), s.t.Ai ∈ f d(Ai),Par(A1) ∩ Par(A2) = ∅, u /∈ Par(Ai)
for i = 1,2}.

The idea of interpolating modality rules into an intuitionistic derivation in order to find
the EAL derivations of the corresponding term was the original idea of[8]. Here, given
a canonical ILS derivationD we decorate it into an LALa derivationD by attributing to
each occurrence of(prom) a fresh parameter. More formally we defineD by induction
onD:
• if D is simply a(var) rule onA, we takeA1, A2 in f d(A) with disjoint parameters and

D is an LALa(var) rule of conclusionx : A1�x : A2;
• if D is obtained by(weak) onD1 with A, we takeA in f d(A) with parameters disjoint

from those ofD1, andD is obtained by(weak) onD1 with A;
• if D is obtained by(abst) onD1, defineD by (abst) onD1;
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• if D is obtained fromD1, D2 by a (appl) rule (resp.(contr)) we can assumeD1, D2
have disjoint sets of parameters (otherwise rename their parameters) andD is obtained
by (appl) (resp.(contr)) onD1, D2;

• if D is obtained fromD1, . . . ,Dn, D0 by a(prom) rule, we assume as before theDi have
disjoint parameters, takev not occurring in theDi and belonging toVm if n�2, Vb if
n�1, and defineD by a(prom) rule on theDi with parameterv.

We callcanonical abstract derivation(c.a.d.) an LALa derivation obtained in this way from
a canonical ILS derivation. We finally have:

Lemma 12. The judgment��LALst : A is derivable iff there exists a canonical abstract
derivationD with a solution� such that�(D) is a derivation of��LALst : A.

6.3. From decorations to constraints

Now, given a termt with FV (t) = {x1, . . . , xn} our method for deciding of its typability
in LALs is the following one:
• using Proposition9 enumerate the canonical term constructions ofx1, . . . , xn�t ;
• using Proposition10determine the principal types of these canonical term constructions

and the corresponding canonical ILS derivationsD1, . . . ,Dn;
• using the decoration procedure enumerate the corresponding canonical abstract deriva-

tionsD′
1, . . . ,D′

n;
• for each such canonical abstract derivationD′

i search if it has a solution�, in which case
we get an LALs type derivation�(D′

i ) for t.
By Lemma12 we know that a solution to this procedure will yield a suitable LALs type
derivation for the termt. Conversely if the termt is LALs typable then by Proposition11
and Lemma12we know that the procedure will provide a canonical abstract derivationD′

i

which has a solution�. So what remains to be done to prove the decidability of typability
is to establish that finding a solution of a c.a.d. is decidable.

We associate to an abstract derivationD a set of typing constraintsCons(D) in the fol-
lowing inductive way (keeping the notations of Fig.8):

Cons(D) = {A1�A2} if D = (var),

Cons(D) = Cons(D1), if D is obtained fromD1 by (abst) or (weak),
Cons(D) = Cons(D1) ∪ Cons(D2) ∪ {s4�, A2�A1}

if D is obtained fromD1,D2 by (appl),
Cons(D) = ∪ n

i=0Cons(Di ) ∪ {A′
i�vAi,1� i�n},

if D is obtained fromD1, . . .Dn, D0 by (prom),
Cons(D) = Cons(D1) ∪ Cons(D2) ∪ {A� !uÂ, !uÂ�Ai,1� i�n}

if D is obtained fromD1,D2 by (contr).

Given an abstract derivationD, we know by lemma7 that a map� is a solution ofD iff
� is a solution of the system of inequationsT (Cons(D)). Say a system of inequationsS is
a canonical abstract derivation system(c.a.d. system) if there exists a canonical abstract
derivationD such thatS = T (Cons(D)).
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7. Solving the constraints

7.1. Stratification

Now we want to solve c.a.d. systems of inequations. Note that if we hadequationsinstead
of inequations we could apply Makanin’s theorem which shows decidability of such systems
(see for instance[12]). But we know of no general result which would apply to the systems
of inequations we are considering. However we can here take advantage of a strong property
of the systems we are interested in,stratification.

Definition 3. Let S be a system of inequations and� be a solution. Say� is astratified
solutionof S if there exists adepthfunctiond defined onPar(S) and the (occurrences of)
constants inS, with values inN, and such that:
(1) for s4s′ in S with s = u1s1, s′ = u2s2 we haved(u1) = d(u2),
(2) for s = u1 . . . un a member of inequation we have:d(ui+1) = d(ui)+ |�(ui)|.

If s = u1 . . . un we also defined(s) as d(u1) and ind(s) (internal depthof s) as
d(un)+ |�(un)|.

We say a systemS is stratified if all its solutions are stratified (so in particular if it has no
solution).

Considering a stratified solution�, d and an inequation(I ) of the system, if(I ) = s14s2
we will denoted(I ) = d(s1) (so alsod(s2)) andind(I ) = ind(s1) (alsoind(s2)).

Example 2. Consider the systemS given in Fig.12. It does not have any stratified solution.
Indeed, assume there was one� with depthd. InequationI1 implies that|�(u2)| = 1.
InequationI2 tells that�(u3) 
= � (because §4! does not hold) and so|�(u3)|�1. By I2
we haved(u2) < d(u3), and byI3: d(u3)�d(u2), hence a contradiction.

Proposition 13. If S is a canonical abstract derivation system, then it is stratified.

The notion of depth defined here coincides with the notion of depth considered in proof-
nets and mentioned in Section4.

Proof (Proposition13).We define two new functionsk(., .) andl(., .). If w is an occurrence
of parameter in an abstract typeA thenk(w,A) is the list of parameters in the scope of
whichw is, in A. For instance
if A = u1u2(p1u3��u4wp2�) thenk(w,A) = 〈u1, u2, u4〉.

We consider a canonical abstract derivationD. Let R be an occurrence of rule inD. We
denote byl(R,D) the list of parameters associated to promotion rules with right premise




§ 4 u2 I1
u1§ 4 u2!u3 I2
u3u2 4 !u4 I3

Fig. 12.
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belowR in the derivation treeD (excludingR itself): if R is the last rule ofD thenl(R,D) =
�, otherwise assumingRoccurs in derivationD0, then
• if D is obtained fromD0 by a (prom) with parameterv andD0 is right premise of the

rule thenl(R,D) = v :: l(R,D0);
• if D is obtained fromD0 by a (prom) andD0 is not right premise, or ifD is obtained

from D0 by another rule thenl(R,D) = l(R,D0).
Finally we define for a parameterv occurring inD a list l(v,D):
• if v is introduced by a promotion ruleR then:l(v,D) = l(R,D),
• if v is introduced by a contraction ruleR then:l(v,D) = l(R,D) :: !,
• if v is introduced by a (var) ruleRof conclusionx : A1�x : A2 andv occurs inAi then:
l(v,D) = l(R,D) :: k(v,Ai).

Note that this definition makes sense becauseD is a canonical abstract derivation and so
each parameter is introduced by at most one rule (and in the case of (var) appears in only
one of the two formulasA1, A2). �

To simplify the notation we will writel(R) (resp.l(v)) for l(R,D) (resp.l(v,D)) when
there is no ambiguity.

Now, assume we have a solution� of D. We want to prove that this solution is stratified.
For that we define a functiond(.) on parameters in the following way:
d(v) = ∑n

i=1 |�(vi)| if l(v) = 〈vn, . . . , v1〉,
d(v) = 0 if l(v) is the empty list.
We need to show that� andd(.) satisfy conditions (1) and (2) of definition3. For that we
use an intermediary lemma, whose proof is given in appendixC:

Lemma 14. If parameteru1 (resp.u2) occurs inB1 (resp.B2) and constraintB1�B2 is
associated to rule R, then:
l(u1) = l(R) :: k(u1, B1),

l(u2) = l(R) :: k(u2, B2).

Let us show that�,d satisfy condition (1). Lets4s′ be inS = T (Cons(D))with s = u1s1,
s′ = u2s2: there exists a ruleRof D with constraintB1�B2 such that:s4s′ ∈ T (B1�B2).
Then eitheru1 ∈ B1 andu2 ∈ B2, or u1 ∈ B2 andu2 ∈ B1. Let us assume for instance we
are in the first case (the second one is similar).

By Lemma14we have

l(u1)= l(R) :: k(u1, B1), (1)

l(u2)= l(R) :: k(u2, B2). (2)

Let us denotek(u1, B1) = 〈vn, . . . , v1〉, k(u2, B2) = 〈wm, . . . , w1〉.As� is a solution ofD
we have�(B1)��(B2), which in particular implies that:

∑n
i=1 |�(vi)| = ∑m

j=1 |�(wj )|.
So from equalities (1) and (2) and the definition ofd we getd(u1) = d(u2); condition

(1) of Definition3 is thus satisfied.
Let us examine condition (2) of definition3. Lets = u1 . . . un be a member of inequation

of S. Thens appears in a formulaA of a constraint associated to a ruleR; soui andui+1
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both appear inA, and by lemma14we have
l(ui+1) = l(R) :: k(ui+1, A),

l(ui) = l(R) :: k(ui, A).
As the sequenceu1 . . . un occurs inA we have
k(ui+1, A) = k(ui, A) :: ui,

so l(ui+1) = l(ui) :: ui.
Hence by definition ofd: d(ui+1) = d(ui) + |�(ui)|. Therefore the solution� is strati-
fied. �

Now we have:

Theorem 4. Given a systemS, the existence of a stratified solution is decidable.

This theorem will be proved in the rest of this section. From these two results we can
then deduce:

Theorem 5. The existence of a solution for a c.a.d. system is decidable.

With Section6.3we then get:

Corollary 6. The derivation instantiation problem(Problem 1) for canonical abstract
derivations is decidable.

and from that our main result follows:

Theorem 7. Given a lambda-term t withFV (t) = {x1, . . . , xn}, one can decide whether
there exists an LALs derivation of conclusionx1 : A1, . . . , xn : An�LALst : A.

Let us come back to the proof of theorem4. We will consider two characteristics of
systems of inequations:
• themeasureof a systemmes(S) is the number of!s in right members of inequations of

S (similarly for the numbermes(I) of !s in the right member of inequationI),
• thesizeof a system|S| is the number of inequations ofS.
Let us first point out an easy case: when the system does not have any! in right members:

Proposition 15. If mes(S) = 0 then one can decide if there exists a solution.

Proof. The key is that one can look for a monocolored solution, that is to say with words
in {§}∗. Indeed assume� is a solution, then define
 by: for anyu, 
(u) = §k where
k = |�(u)|. Then as there are no! in r.h.s. members ofS, and as!4§ the map
 is also a
solution ofS.

Now, a monocolored solution
 is completely defined by the lengths|
(u)|, so to find
whether there is one it is sufficient to solve the system of linear equations (over integers)
obtained by replacing the word parameters by length parameters.�



ARTICLE IN PRESS
P. Baillot / Theoretical Computer Science ( ) – 21

7.2. Informal description of the algorithm

We now give an algorithm to decide whether a system has a stratified solution. When
applied to a stratified system the algorithm will thus allow to find a solution or determine
that there is none.

In fact we give a non-deterministic algorithm and we will then justify how to transform
it into a deterministic one. The idea of our algorithm is to non-deterministically reduce the
solving ofS to the solving of a system with no! in right members (measure 0), which is a
problem we saw was decidable. To do so we want to progressively eliminate the occurrences
of ! in right members of inequations.

Take an inequationa1 . . . an4s1!0s2 (I ) of S. We can assume theais are characters
(! or §) or word variables. After instantiation by a solution, the two words on each side ofI
should have same length, and as!4§ if k is the position of the character!0 on the r.h.s., the
character in positionk on l.h.s. should be!. If we can guess whichaj contains this character
we can replaceI with

aj = aj1!aj2,

a1 . . . aj−1aj1 4 s1,

aj2aj+1 . . . an 4 s2.

First observe that this guess can be successful only ifaj is a bicolored variable (auj ) or a
! character. In the last caseaj1 andaj2 are taken to be�. So to simplify (without avoiding
the difficulty) we can assume theaj ’s are all bicolored variables.

The real problem is thataj might appear in other inequations, possibly in r.h.s. members
and that replacingaj with aj1!aj2 we have introduced new!s in r.h.s. members. Let us call
these!s and those that will appear when we try to eliminate them in the same way,residuals
of !0.

Now, a naive non-deterministic algorithm could proceed by repeating the following task:
choose a! on r.h.s.; eliminate it and eliminate its residuals. When reachingS with mes(S) =
0 solve it and track back a solution to the original system if there is one. However this
procedure does not terminate in general. If we consider the tree of all its non-deterministic
runs (with systems as nodes, and a branching for each choice of inequation splitting) it has
infinite branches.

Our algorithm will refine this procedure by pruning some branches of the search tree, thus
keeping only finite branches. The key feature is that we only look for stratified solutions,
so at some points we already know that no stratified solution will be found and we can give
up the search.

The algorithm will proceed byrounds, each round consisting in eliminating one! on r.h.s.
of inequation and all its residuals in r.h.s. members.At the end of a round the measuremes(S)
will have decreased by 1. A round will be divided intostepsconsisting in eliminating a r.h.s.
! (the way we just sketched) and creating residuals. Basically, the trick is that a member
of inequation cannot get twice a residual of the same!. There will be a possibility of
interrupting a step (hence stopping the current execution without giving a solution) if we
get into a configuration with no stratified solution. In such a case the algorithm should be
run again.
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If S does not have any stratified solution then all executions end with an interruption or
a S ′ with mes(S ′) = 0 and no stratified solution. IfS has stratified solutions, then at least
one of them is reached by an execution.

7.3. The algorithm

We will handle the following data:
• R: set of equations. Initially:R = ∅;
• S system of inequations handled as a set. InitiallyS is the systemS0 to be solved.S and

S are disjoint subsets ofS such thatS = S ∪ S;
• stackP of inequations with one marked occurrence of! in their right member (we denote

them as pairs(I, !0) where!0 is an occurrence of!). The elements ofP belong toS.
During the whole run: S is the current state of the system;R keeps track of the variables

we have deleted and how to retrieve their values from the current variables.
During a ROUND:S is the subset of inequations thatmightcontain residuals of the current

!0; P contains the inequations ofS with residuals of!0; S is the subset of inequations ofS
that cannot contain residuals of!0.

Notation: we denote byS〈s → u〉 the result of the substitution in a systemS of inequa-
tions of all occurrences of a variableu by the words.

The algorithm is then given by:
• repeat the ROUND until getting a systemS ′ with mes(S ′) = 0.

ROUND:
◦ S := S; S := ∅; P := � ( empty stack);
◦ take inS an inequationIl with mes(Il) > 0 and!0 in the r.h.s. member ofIl :

Il : u1 . . . un4s1!0s2
◦ push(Il, !0) onP.
◦ repeat the following procedure untilP = �:

STEP:
pop(Il, !0) from P: Il : u1 . . . un4s1!0s2
guessuj (bicolored variable or!) such that!0 “belongs” touj ;
S := (S\{Il})〈uj1!uj2 → uj 〉
S := (S ∪ {u1 . . . uj14s1 (Il1)} ∪ {uj2 . . . un4s2 (Il2)}
if S contains an occurrence ofuj : STOP.
S := S ∪ S
R := R ∪ {uj = uj1!uj2}
if uj is a variable, push onP the inequations ofS in which auj has been replaced

in the r.h.s. (i.e. containing residuals in the r.h.s.)
end of STEP.

end of ROUND.
• When we havemes(S) = 0 we compute the existence of a (monocolored) solution, and

if there is one, usingR we track back a solution of the original systemS0.
We give an example of run in AppendixD.
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7.4. Properties of the algorithm

7.4.1. Termination
Each STEP trivially terminates since it contains no loop. Each ROUND does also ter-

minate because STEP decreases|S| by 1. Now let us observe that each ROUND decreases
mes(S) by 1. Indeed a ROUND selects a!0 in a r.h.s. ofS and removes it. During a ROUND,
the only ! that can be added in r.h.s. members ofS are residuals of the!0. The residuals
of !0 in S are stored inP and removed; if a residual is to appear inS the algorithm stops
(line 5 of STEP). So each ROUND does decreasemes(S) by 1, hence the non-deterministic
algorithm terminates.

Remark 8. Note that the crucial argument for termination is the fact that STEP decrements
|S|, which comes from line 3 of STEP:
S := (S\{Il})〈uj1!uj2 → uj 〉.

This means that the algorithm will not try to remove residuals from the inequations(Il1)

and (Il2) coming from(Il). In fact if S contains an occurrence ofuj in an r.h.s., then
the algorithm stops (line 5 of STEP): the reason for that is that in this case the remaining
reachable solutions of the system are not stratified (so we prune the corresponding subtree
of the tree of possible executions). Indeed the algorithm is not complete with respect to all
solutions, but only with respect to stratified solutions.

We can give an explicit bound. The number of ROUNDS is bounded bymes(S). If we
denote bySi the system at the beginning of theith ROUND, the number of STEPS of
ROUND i is bounded by|Si | = |Si |. At each STEP the size of the system increases by 1.
So|Si+1|�2|Si |. In conclusion the length of any run is bounded by 2mes(S) · |S|.

7.4.2. Correctness
It is rather easy to check correctness: consider two consecutive states of the system

denoted asSi andSi+1. Remember thatSi+1 is obtained fromSi by splitting an inequation
Il in two. Assume we have a solution
 of Si+1, then keeping the notations used before we
define�(uj ) := 
(uj1)!
(uj2) and�(v) := 
(v) for the other variables. It is clear that�
is then a solution ofSi . So if we have a solution of the final system, it can be lifted back to
a solution of the initial systemS0 using the equalities inR.

7.4.3. Completeness
Let us now examine the completeness issue, which is more delicate. AssumeS0 has a

stratified solution� with depthd and let us show that there is a run of the algorithm leading
to this solution. We describe one possible execution of the non-deterministic algorithm,
using the knowledge of�, d. We denote byd the depth function at any moment of the
execution (its domain is extended to the variables introduced during the execution).

During one ROUND we try to eliminate a r.h.s.!0 and its residuals. The important point
is that this ROUND proceeds at fixed depth, that is to say that the residual!s have the
same depthd0 as !0. An inequations14s2 can contain a residual of!0 only if it satisfies
d(s1)�d0 < ind(s1). The execution of the ROUND has the following invariant:
for any inequations14s2 of S we have:d(s1) > d0 or ind(s1)�d0. (*)
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Consider one stateS of the system with stratified solution�, d.We consider the inequation
u1 . . . un4s1!0s2 (Il) from the top of the stack. Letj be such thatd(uj )�d0 < d(uj+1)

(or d(un)�d0 andj = n). We chooseuj in this STEP and(Il) is replaced by

u1 . . . uj1 4 s1 (Il1),

uj2 . . . un 4 s2 (Il2).

Call S ′ the new system. Define�′ onPar(S ′) by

�′(v)= �(v) for v 
= uj ,

�′(uj1)= t1 prefix of�(uj ) of lengthd0 − d(uj )− 1,

�′(uj2)= t2 suffix of �(uj ) of length|�(uj )| − |�′(uj1)| − 1.

We also define in the same wayd ′ with d ′(uj1) = d(uj ), d
′(uj2) = d0 + 1. Then�′, d ′ is

a stratified solution ofS ′.
So ifS has a stratified solution thenS ′ has a stratified solution. Moreover forS ′ we have:

ind ′(Il1) = d0, d
′(Il2) = d ′(uj2) = d0 + 1. So execution of line 4 of STEP preserves the

invariant (*). IndeedIl1 andIl2 cannot contain any further residual of!0, which is why we
don’t include them inS ′.

This execution will therefore terminate with a systemS ′ with mes(S ′) = 0 (without
raising STOP). The systemS ′ has a solution from which we can get a stratified solution to
the initial system.

7.4.4. A deterministic algorithm
Observe that at each STEP the non-deterministic choice is between a finite number of

possibilities (the characters and word variables on the l.h.s. of the inequation currently
examined). If we represent the runs of the non-deterministic algorithm as a tree we have
finite branchings and all branches have finite length. Therefore a brute-force algorithm can
deterministically completely explore the tree and solve the system.

8. Conclusion and future work

The study of Linear logic proof-theory made possible the introduction of systems captur-
ing complexity classes such as Light linear logic or more recently Soft linear logic[18] for
polynomial time. We wanted here to make the point that this domain can be interfaced with
typing techniques, for instance by taking advantage of type-theory tools such as subtyping
or constraints solving. We followed the approach of using light logic as a non-standard
type system used on ordinary lambda-calculus to verify a complexity property, namely that
the programs can be run with a polynomial time bound (using proof-nets or light affine
lambda-calculus as intermediate language). The first step in this direction was to establish
decidability of type-inference, which we did for the quantifier-free fragment. For that we
considered constraints on words; we showed that the systems arising in our setting satisfied
an important regularity property linked to stratification and gave a decision procedure for
these systems.

Several questions arise at this point. Can this approach be partially extended to the
polymorphic setting, for instance if we start from a system F-typed term rather that from
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an untyped term? The practicability of type inference and its modularity should also be
investigated. We considered as source language here standard�-calculus for the sake
of generality, but as in the procedure one has to first choose a suitable sharing of sub-
terms (Section6.2) it might be more reasonable in practice to start with an interme-
diate language with explicit sharing possibly as in[9], or a generalization of the one
in [23].

Appendix A. Proof of Proposition 9

Proof. We want to establish decidability and do not try here to give an efficient algorithm.

We want to construct, proceeding bottom-up, all possible canonical term constructions
for ��t . To show that this procedure terminates we provide a bound on the height of the
branches of the derivation trees; it is then enough to observe that we can bound the arity of
each rule and the search-space for the derivations will be delimited.

We consider the size function on lambda-terms given by

|x| = 1, |(t u)| = |t | + |u|, |�x.t | = |t | + 1.

Let n(x, t) denote the number of (free) occurrences of variablex in term t. We consider
another function taking into account the number of repetitions of free variables:

rep(t) = ∑
x∈FV (t)

(n(x, t)− 1).

We consider the following measure on judgements, with lexicographic order:

mes(��t) = (|t |, rep(t),#�),

where #� denotes the length of�.
Now let us examine the various rules (applied bottom-up) and whether they make this

measure decrease. Rules(appl)and(abst)make the size of the term decrease, so the measure
of the judgements too. The(weak) rules leaves|t |, rep(t) unchanged but the length of the
context decreases.

Consider the(contr) rule. As we required thatn�2 andx1, . . . , xn ∈ FV (t), if t ′ is not
a variable then|t{t ′/x1, . . . , xn}| > |t | and |t{t ′/x1, . . . , xn}| > |t ′|, and so the measure
decreases. Ift ′ is a variable then|t{t ′/x1, . . . , xn}| = |t |, but rep(t{t ′/x1, . . . , xn}) >
rep(t).

Let us examine the(prom) rule. If it is not basic, that is to say one of theti is not a
variable, then by the condition thatxi ∈ FV (t) we get:|t{ti/xi}| > |t |. A basic(prom)
however leaves the measure unchanged.

So basic(prom) is the only instance of rule that leaves the measure unchanged. But it
follows from the definition of canonical term construction that there are no two consecutive
applications of basic(prom). Hence the height of a branch is bounded by 2mes(��t : B),
where��t is the initial judgement. �
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Appendix B. Proof of Proposition 11

The proof of Proposition11 will require some intermediary definitions and results. The
key result will be Proposition21.

B.1. LALs inequations and type variables substitution

LetI denote a set of inequations{Ti �Ui,1� i�n} where theTi andUi are LAL types.
We consider the problem of finding a substitution	 from type variables to LAL formulas
(calledLAL substitution) such that	Ti�	Ui holds for any 1� i�n. Note that this problem
is not the same as the one considered in Section6.1where we were searching substitutions of
word variables solving a system of inequations (in that case type variables were unchanged).

Let [I] denote the set of IL equations[I] = {[Ti] ≡ [Ui],1� i�n}. The problem of
finding a substitution mapping variables to IL types (IL substitution) satisfying[I] is a
unification problem and if it has a solution there is amostgeneral unifier (m.g.u.).

If 	 is an LAL substitution,[	] will denote the IL substitution defined by[	](�) = [	(�)]
for all type variables�. Note that:

Lemma 16. If 	 is a solution ofI then[	] is a solution of[I] .

Now, to relate solutions of[I] to solutions ofI we will consider a new operation on LAL
types. Given an IL formulaF we define a partial map(.)|F from LAL formulas to LAL
formulas by

A|F1→F2 =
{
u(A1|F1�A2|F2) if A = u(A1�A2),

undefined ifA = u� (� type variable),
A|� = u�, if A = u(A1�A2) orA = u�.

The following lemmas can then be easily verified:

Lemma 17. If A|F is defined then[A|F ] = F . Moreover for any A we haveA|[A] = A.

Lemma 18. If A|F is defined then for any u of{!,§}, we have: (uA)|F = u(A|F ).

Lemma 19. If A, B are LAL formulas, we haveA�B holds iff: [A] = [B] and for all F of
IL, A|F is defined iffB|F is defined, andA|F �B|F .

Lemma 20. If A is an LAL formula, F an IL formula, 	 an IL substitution and[A] = 	F ,
thenA|F is defined.

We are now equipped to prove the following proposition:

Proposition 21. Let I be a set of LAL inequations. IfI admits a solution and� denotes
the m.g.u. of[I] then there exists a solution	 of I such that[	] = �.
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Proof. AssumeI has a solution	 and let us introduce a solution	0 such that:[	0] = �.
We define the LAL substitution	0 by: 	0� = (	�)|��, for all type variables�.
The fact that	0� is well defined for all� follows from Lemma20, the fact that� is m.g.u.

of [I] and that[	] is a solution of[I].
We then obtain:

Lemma 22. For all formula A of LAL, we have: (	A)|�A is well-defined and	0A =
(	A)|�A.

Proof. By structural induction onA, using the definition of	0, of (.)|F and Lemma18. �

Now, letA�B be an inequation ofI. As 	 is a solution ofI we have:	A�	B (*).
As [A] ≡ [B] is an equation of[I] and� is a solution of[I] we have:�[A] = �[B].
By Lemma22 (	A)|�A and(	B)|�B are well-defined.
Then by Lemma19 as�[A] = �[B] from (*) we get:(	A)|�A�(	B)|�B . So finally by

Lemma22: 	0A�	0B. Therefore	0 is a solution ofI. �

B.2. Relating LALs derivations to simple type derivations

In this section we will use a calculus and methods inspired from[9]. Indeed for proving
Proposition10we need to use a term syntax for LALs proofs. Light affine lambda-calculus
[23] is an efficient tool for this purpose, but as we do not need here to establish computational
properties on these terms but wish to have a syntax close to the presentation of LALs we
adopted we use a term calculus analogous to that of[8,9]) for Elementary affine Logic.

The set of LA-terms�LA is defined by the grammar:

M ::= x | �x.M | (M M) | †M [M/x1, . . . ,M/xn] | [M]M=x1,...,xn ,

where † stands for! or §.
Theerasureof an LA-termM is a lambda-termM− defined by

(†M [M1/x1, . . . ,Mn/xn])− = M−{M−
1 /x1, . . . ,M

−
n /xn},

([M]M1=x1,...,xn)
− = M−{M−

1 /x1, . . . , xn}
and(.)− commutes to the other constructions.

We say an LA-termM term isvalid if any variable occurs at most once inM and if for
any subterm of the form!M [M/x1, . . . ,M/xn] we haven�1.

The rules of LALs can be seen as typing rules for LA-terms, by adapting in the straight-
forward way the rules of Fig.6: the only changes are on(prom) and(contr):

�1�M1 : a1A
′
1 · · · �n�Mn : anA′

n x1 : A1, . . . , xn : An�M : B
�1, . . . ,�n�a0M [M1/x1, . . . ,Mn/xn] : a0B

aiA
′
i�a0Ai (prom),

��M1 : !A x1 : A1, . . . , xn : An,��M0 : B
�,��[M0]M1=x1,...,xn : B !A�Ai (contr)

with for (prom) the condition:
(1) if n�2 thena0 = §.
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Any derivation of a judgement��LALsM : A with M an LA-term obviously corre-
sponds to an LALs proof. Note that actually the untyped termM gives all the structure
of the proof (assuming a convention for(weak) rules), but the types used in the(var)
rules.

If M is LALs typable then it is a valid term. We want to give a method to compute for
a valid LA-termM all its LALs type judgements, if any. For that we associate toM a type
judgement schemeTL(M) = 〈�;�〉 and a set of inequationsI(M) corresponding to the
conditions expressing the validity of a derivation. The pairTL(M) and the setI(M) are
defined by induction onM as below; note that they are defined up to renaming of type
variables.
• if M = x:

thenTL(M) = 〈x : �; �〉, I(x) = ∅.
• if M = �x.M1 andTL(M1) = 〈�;B〉:

thenTL(M) = 〈�;A�B〉 with: A = �(x) and� = �\{x} if �(x) is defined;A = �
(fresh variable) and� = � otherwise.

• if M = (M1 M2) andTL(Mi) = 〈�i;Ai〉 for i = 1,2:
thenTL(M) = 〈�1,�2; �〉 (� fresh variable) andI(M) = I(M1) ∪ I(M2) ∪ {A1 �
(A2��)}.

• if M = †M0 [M1/x1, . . . ,Mn/xn] andTL(M0) = 〈x1 : A1, . . . , xn : An;B〉, and
TL(Mi) = 〈�i;A′

i〉 for 1� i�n:
thenTL(M) = 〈�1, . . . ,�n; †B〉 andI(M) = ∪ni=0I(Mi) ∪ {A′

i � †Ai,1� i�n}.
• if M = [M0]M1=x1,...,xn andTL(M0) = 〈x1 : A1, . . . , xn : An,�;B〉,TL(M1) = 〈�;A〉:

thenTL(M) = 〈�,�;B〉 andI(M) = ∪1
i=0I(Mi)∪ {A� !�, !� �Ai,1� i�n} (where

� is fresh).
In a similar way we consider the typing of valid LA-terms in IL. The judgements will be
denoted as��ILSM : A. The typing rules are the same as for typing ordinary lambda-terms
in IL but for the two extra rules(prom) and(contr):

�1�ILSM1 : A1 · · · �n�ILSMn : An x1 : A1, . . . , xn : An�ILSM : B
�1, . . . ,�n�ILSa0M [M1/x1, . . . ,Mn/xn] : B (prom), (1)

��ILSM1 : A x1 : A, . . . , xn : A,��ILSM0 : B
�,��ILS[M0]M1=x1,...,xn : B (contr).

(1) if n�2 thena0 = §.
As in the case of LALs, to a valid LA-termM we associate a type judgement scheme

TI (M) = 〈�;�〉 and a set of equationsE(M) defined by
• if M = x:

thenTI (M) = 〈x : �; �〉, E(x) = ∅.
• if M = �x.M1 andTI (M1) = 〈�;B〉:

thenTI (M) = 〈�;A�B〉 with A = �(x) and� = �\{x} if �(x) is defined;A = �
(fresh variable) and� = � otherwise.

• if M = (M1 M2) andTI (Mi) = 〈�i;Ai〉 for i = 1,2:
thenTI (M) = 〈�1,�2; �〉 (� fresh variable) andE(M) = E(M1) ∪ E(M2) ∪ {A1 ≡
(A2��)}.
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• if M = †M0 [M1/x1, . . . ,Mn/xn] and TI (M0) = 〈x1 : A1, . . . , xn : An;B〉, and
TI (Mi) = 〈�i;A′

i〉 for 1� i�n:
thenTI (M) = 〈�1, . . . ,�n; †B〉 andE(M) = ∪ni=0E(Mi) ∪ {A′

i ≡ Ai,1� i�n}.
• if M = [M0]M1=x1,...,xn andTI (M0) = 〈x1 : A1, . . . , xn : An,�;B〉, TI (M1) = 〈�;A〉:

thenTI (M) = 〈�,�;B〉 andE(M) = ∪1
i=0E(Mi) ∪ {A ≡ �, � ≡ Ai,1� i�n} (where

� is fresh).
As in Section6.2for LALs or ILS typing derivations, to an LA-termM we can associate a
term constructionT (M) in a natural way.

Finally we have:

Proposition 23. Let M be a valid LA-term. The judgement��LALsM : A (resp.
��ILSM : A) is derivable iff there exists a solution	 of I(M) (resp.E(M)) such that
	� ⊆ �, 	B = A, where〈�, B〉 = TL(M) (resp.〈�, B〉 = TI (M)).

Proposition 24. The valid terms of�LA admit the principal type property in ILS and the
principal type of M is given by〈��; �B〉 where〈�;B〉 = TI (M) and � is the m.g.u. of
E(M).

Proof. It follows directly from the definitions ofE(M) andTI (M) and the properties of
the m.g.u. �

Lemma 25. Assume M is a valid LA-term and��ILSM : A is its principal ILS type. Then
if t = M− andT1 = T (M), the principal type ofT1 is ��ILSt : A.

Proposition 26. Let M be a valid LA-term. If M is typable in LALs then there exists�,
A in LAL such that��LALsM : A is derivable and[�]�ILSM : [A] is the principal type
of M in IL.

Proof. One can prove by structural induction on valid LA-terms that for anyM:
if TL(M) = 〈�;B〉 thenTI (M) = 〈[�]; [B]〉 andE(M) = [I(M)].

If M is LALs typable then it is ILS typable, thus by Proposition23bothI(M) andE(M)
have solutions. Then asE(M) = [I(M)], by Proposition21 if � denotes the m.g.u. of
E(M) there exists a solution	 of I(M) such that[	] = �. Hence by Proposition23 again,
	��LALsM : 	B is derivable. Moreover we have:TI (M) = 〈[�]; [B]〉 so by Proposition
24, TI (M) = 〈�[�]; �[B]〉 is the ILS principal type ofM. Finally �[�] = [	�] and�[B] =
[	B]. �

Now we can prove Proposition11:

Proof (Proposition11). LetD be an LALs derivation of��LALst : A. This derivation gives
an LALs type derivation for an LA-termM, with conclusion��LALsM : A, and we have
M− = t . Let T1 = T (D); we haveT1 = T (M). Now let��M : B be the principal ILS
type ofM, then by Proposition26 there exists�′, A′ in LAL such that�′�LALsM : A′ is
derivable and[�′] = � and[A′] = B. This implies that�′�LALst : A′ has a derivationD′,



30 P. Baillot / Theoretical Computer Science ( ) –

ARTICLE IN PRESS

with T (D′) = T (M) = T1 . Moreover by Lemma25, ��t : B is the principal type ofT1,
which concludes the proof.�

Appendix C. Proof of Lemma 14

To prove Lemma14we first establish another lemma:

Lemma 27. If parameterv occurs in A and rule R has a premise of the form��t : A or
�, x : A�t : B, then:
• if R = (prom) with associated parameter u and the judgement containing A is right

premise of this rule then: l(v) = l(R) :: u :: k(v,A),
• otherwise: l(v) = l(R) :: k(v,A).

Proof (Lemma27). LetR′ be the rule introducingv andn be the number of rules between
R′ andR in the corresponding branch of the derivation tree (n = 1 if R immediately follows
R′). Note thatn�1 becauseR does not introducev (one of its premises containsA). We
proceed by induction onn.
• If n = 1 then:

l(R′) =


l(R) :: u if R = (prom) and the conclusion ofR′ is

right premise ofR ,
l(R) otherwise.

◦ if R′ = (prom) we have:l(v) = l(R′), k(v,A) = �, so

l(R′) =


l(R) :: u :: k(v,A) if R = (prom) and the conclusion ofR′

is right premise ofR,
l(R) :: k(v,A) otherwise.

◦ if R′ = (contr) then:l(v) = l(R′) :: !, k(v,A) = !, so the property is satisfied.
◦ if R′ = (var) then :l(v) = l(R′) :: k(v,A), so the property is valid.

• If n�2 letR′′ be the rule immediately precedingRwith conclusion containingA. Then:

l(R′) =
{
l(R) :: u if R = (prom) and the conclusion ofR′ is right premise ofR ,
l(R) otherwise.

Using the induction hypothesis onR′′ and the fact thatA is in the conclusion ofR′′ we
get:l(v) = l(R′′) :: k(v,A), so the hypothesis is also satisfied byR. �

Proof (Lemma14). If R = (var), (appl) or (contr) then the statement follows directly
from applying lemma27 to R, B1 andB2.

Otherwise ifR = (prom) then using the notations of Fig.8 there are anA′
i and anAj

such thatB1 = A′
i andB2 = vAj . By applying Lemma27respectively toRandA′

i and to
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RandAj we get
l(u1) = l(R) :: k(u1, A

′
i ) = l(R) :: k(u1, B1),

l(u2) = l(R) :: v :: k(u2, Aj ) = l(R) :: k(u1, B2),

which ends the proof. �

Appendix D. Example of constraints resolution

We illustrate the use of the algorithm from 7.3 on a simple example. We consider the
following lambda-term:t = (P (P �x.x)), with P = �y.�z.(y (y z)). Note that the term
P is the Church integer 2.

Here is one canonical term construction forP (among several possible):

T1 =

z � z y2 � y2 (appl)
y2, z � (y2 z) y1 � y1 (appl)

y1, y2, z � (y1 (y2 z)) (abst)
y1, y2 � �z.(y1 (y2 z)) (prom)
y1, y2 � �z.(y1 (y2 z)) (contr)

y � �z.(y (y z))
(prom)

y � �z.(y (y z))
(abst)

� P

From that we give a canonical term constructionT2 for t:

� · · ·T1
� P

� · · ·T1
� P

x � x
� �x.x (prom)
� �x.x (appl)

� (P �x.x)
(prom)

� (P �x.x)
(appl)

� (P (P �x.x))

Some other examples of term constructions fort can be obtained for instance by applying
as last rule:

� P z1, z2 � (z1 (z2 �x.x))
(contr).

� t

We will consider in the following the term constructionsT1 andT2. They respectively have
principal types�P : (� → �) → (� → �) and�t : (� → �). Let us denote� = ���.
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From the ILS derivation obtained fromT1 with its principal type we define the following
abstract derivationD1 for P:

...

D1 =

y1 : �, y2 : �, z : � � (y1(y2z)) : �
y1 : �, y2 : � � �z.(y1(y2z)) : �

(prom)
y1 : q�, y2 : q� � �z.(y1(y2z)) : q�

(1) (contr)
y : !w� � �z.(y(yz)) : q�

(prom)
y : u!w� � �z.(y(yz)) : uq�

� P : u!w��uq�

with constraints:(1) !w��q�.
The derivationD1 is actually not quite a canonical abstract derivation as we have not dec-

orated the types in (var) rules (replacing for instance an occurrence of� byu1(u2��u2�)).
This is only to keep a small number of word variables for the good readability of the
example.

We denote byD′
1 the derivationD1 where parametersu,w andq have been renamed into

u′, w′, q ′ respectively. Then the following derivationD is an abstract derivation fort:

� · · ·D′
1 � P : u′!w′��u′q ′�

� · · ·D1
� P : u!w��uq�

x : � � x : �
� �x.x : �

(prom)
� �x.x : v�

(2) (appl)
� (P �x.x) : uq�

(prom)
� (P �x.x) : v′uq�

(3) (appl)
� (P (P �x.x)) : u′q�

with constraints:(2) v��u!w�, (3) v′uq��u′!w′�. Note thatu, v,w, u′, v′ are bi-
colored variables whereasq, q ′ are monocolored variables. The set of type constraints
Cons(D) is given in Fig.13and the corresponding setS of word constraints in Fig.14.

We demonstrate the execution of the algorithm from section 7.3 onS. We give the state
of the system after line 3 of ROUND and at the end of each run of the STEP subprocedure
(Figs.15–17).

We havemes(S5) = 0. The corresponding problem on integers is given in Fig.18. The
set of solutions toE is given in Fig.19.

Cons(D) =




!w� � q�
v� � u!w�

!w′� � q ′�
v′uq� � u′!w′�

Fig. 13.

S =




!w 4 q I1
v 4 u!w I2
v′uq 4 u′!w′ I3
!w′ 4 q ′ I4

Fig. 14.
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ROUND 1 ROUND 1, STEP 1

S1 =




!w 4 q I1
v 4 u!w I2
v′uq 4 u′!0w′ I3
!w′ 4 q ′ I4

S1 = ∅
R1 = ∅
P1 = 〈(I3, !0)〉

S2 =



!w 4 q I1
v 4 u1!1u2!w I21

!w′ 4 q ′ I4

S2 =
{
v′u1 4 u′ I31
u2q 4 w′ I32

R2 = {
u = u1!u2

P1 = 〈(I21, !1)〉
Fig. 15.

ROUND 1, STEP 2 ROUND 2

S3 =
{ !w 4 q I1

!w′ 4 q ′ I4

S3 =



v′u1 4 u′ I31
u2q 4 w′ I32
v1 4 u1 I211
v2 4 u2!2w I212

R3 =
{
u = u1!u2
v = v1!v2

P3 = �

S4 =




!w 4 q I1
v1 4 u1 I211
v2 4 u2!2w I212
v′u1 4 u′ I31
u2q 4 w′ I32
!w′ 4 q ′ I4

S4 = ∅
R4 =

{
u = u1!u2
v = v1!v2

P4 = 〈(I212, !2)〉

Fig. 16.

ROUND 2, STEP 1

S5 =




!w 4 q I1
v1 4 u1 I211
v′u1 4 u′ I31
u2q 4 w′ I32
!w′ 4 q ′ I4

S5 =
{
v21 4 u2 I2121
v22 4 w I2122

R5 =


u = u1!u2
v = v1!v2
v2 = v21!v22

P5 = �

S5 =




!w 4 q I1
v1 4 u1 I211
v21 4 u2 I2121
v22 4 w I2122
v′u1 4 u′ I31
u2q 4 w′ I32
!w′ 4 q ′ I4

Fig. 17.

From that we get a set of solutions toS5, given in Fig.20(but note that it is not necessarily
the complete set of solutions). UsingR5 we conclude thatS is solvable and has as subset of
solutions the set given in Fig.21, which gives the following possible types fort: §l

′+l1+k+1�,
with l′, l1, k ∈ N, so §m� for anym ∈ N.

An alternative way of executing the algorithm onS would have been to start with the! of
the r.h.s. ofI3 but choose as variablev′ instead ofu; or to start with the! of the r.h.s. ofI2.
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E =




|!w| = |q|
|v1| = |u1|
|v21| = |u2|
|v22| = |w|

|v′| + |u1| = |u′|
|u2| + |q| = |w′|

|!w′| = |q ′|

⇐⇒




|w| + 1 = |q|
|v1| = |u1|
|v21| = |u2|
|v22| = |w|

|v′| + |u1| = |u′|
|u2| + |q| = |w′|
|w′| + 1 = |q ′|

Fig. 18.




k, l1, l2, l
′ ∈ N

|w| = k

|q| = k + 1
|u1| = |v1| = l1
|u2| = |v21| = l2
|v22| = k

|v′| = l′
|u′| = l′ + l1
|w′| = l2 + k + 1
|q ′| = l2 + k + 2

Fig. 19.




k, l1, l2, l
′ ∈ N

w = v22 = §k

q = §k+1

u1 = v1 = §l1

u2 = v21 = §l2

v′ = §l
′

u′ = §l
′+l1

w′ = §l2+k+1

q ′ = §l2+k+2

Fig. 20.




k, l1, l2, l
′ ∈ N

w = §k

q = §k+1

u = §l1!§l2
v = §l1!§l2!§k
u′ = §l

′+l1
v′ = §l

′

w′ = §l2+k+1

q ′ = §l2+k+2

Fig. 21.
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