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Abstract

Light Affine Logic (LAL) is a system due to Girard and Asperti capturing the complexity class P
in a proof-theoretical approach based on Linear Logic. LAL provides a typing for lambda-calculus
which guarantees that a well-typed program is executable in polynomial time on any input. We prove
that the LAL type inference problem for lambda-calculus is decidable (for propositional LAL). To
establish this result we reformulate the type-assignment system into an equivalent one which makes
use of subtyping and is more flexible. We then use a reduction to a satisfiability problem for a system
of inequations on words over a binary alphabet, for which we provide a decision procedure.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Functional languages have been advocated as languages amenable to reasoning on pro-
grams and specifications. Although a lot of work has been done on techniques for checking
gualitativeissues such as the fact that a program meets its specification, there seems to have
been less success guantitativeones such as how to structurally ensure that a program
fits a certain time or space complexity bound. Maybe this means that some conceptual tools
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are still needed on the foundational side, lambda-calculus, logic and rewriting systems, for
handling quantitative aspects.

Since the last decade quite a lot of progress was done in the fiighti€it computational
complexityfor defining languages and calculi in which all programmable functions have a
given complexity (e.g6,14-16,19]. Recall that the original goal of Implicit computational
complexity is to give machine-independent characterizations of complexity classes, where
the control over resources is not managed by explicit measures (e.g. clock) but implicit in
the program constructs or the definitions of the calculus considered. Some of the languages
mentioned are based on restrictions on the use of structural recursion, others on proof-
theoretical methods or on type systems.

Here we are interested lright Affine LogiqLAL) [1,2], a variant of Linear Logic with
a polynomial time cut-elimination procedure (it was obtained as a simplification of Light
Linear Logic[14]) and which characterizes the class P in the proofs-as-programs paradigm.
Light logic has been studied under various aspects: as a logical siteth as a variant of
lambda-calculus via the Curry—Howard isomorphi@8] and semantically5,17,21,24]
some extensions likiight set theory[14,26] or a non-deterministic variafi20] have also
been investigated. However the system is quite delicate to handle and therefore we think
it is important to determine how much of the programming task in this setting could be
automated.

In particular LAL can be used as a type system for ordinary lambda-calculus, ensuring the
property that if a program is well-typed then it is PTIME. In this way type search provides
a way to statically guarantee a time upper bound on a program. The type derivation can
then be seen as @rtificatethat the program can be executed within the bound on any
input. Note that this is a strong property that could not be checked simply by pragmatically
executing the program, because what is given is a bound relative to a (possibly) infinite set of
input values. Note also that even though we are using lambda-calculus as source language,
the polynomial bound isot ensured on ordinary lambda-calculus reduction, that is to say
p-reduction, but on the compilation of the lambda-calculus program ipt@af-net(see
[2]) and its execution by proof-net normalization.

Actually here we focus on type inference for propositional (quantifier free) LAL which
is not very expressive. We consider it as an important first step though because this is the
core of LAL and polymorphism brings difficulties of its own for type inference (recall type
inference for system F is undecidabj27]). We do not know whether type inference for
second-order LAL is decidable. An alternative to polymorphism could be to extend the
lambda-calculus language with functions on basic types and iterator constants (in the style
of the languages if6,16]). This is left for future work, together with the investigation of
the complexity of type inference.

Related workWe already considered the problem of LAL typabilityf&) but in a restricted
setting: the term had to be in normal form and a type was fixed for the argument. With these
conditions we had to deal with Presburger arithmetic constraints.

Coppola and Martini studied if8] type inference in Elementary Affine Logic (EAL),
a system corresponding to Kalmar elementary complexity (seq®08p for which they
showed decidability of type inference. Their algorithm was based on the idea of first propos-
ing a simple type derivation for the term and then interpolating this derivation with modality
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rules in order to find a suitable EAL derivation (in the line of the works on linear decorations
as[11]). The approach we follow here is closer to that proposed by Coppola and Ronchi
della Rocca iff9], where they introduce a notion of principal typing and give another type
inference algorithm for EAL: propose a pattern of type-derivation with free parameters and
express its correctness by a system of constraints (linear equations over integers in the case
of EAL).

A preliminary version of the present work appeared4ds

Outline After recalling the principles of LAL in Sectio we give the natural LAL type
assignment system for lambda-calculus (Sedfiprlefine the subtyping relation and pro-
pose our reformulation of type-assignment with subtyping. Words appear as modalities in
types allowing for the control of duplication. We then consider abstract derivations and
abstract terms (Sectid@), where a degree of freedom is left for the modalities by leaving
some free word parameters. An abstract derivation can be instantiated into a plain deriva-
tion provided some constraints on parameters (words) are satisfied (derivation instantiation
problem). We show how typability can be reduced to the derivation instantiation prob-
lem for some derivations in canonical form. In Sectibmwe establish how to solve the
constraints to decide the previous problem. This amounts to solve systems of inequations
on words.

Acknowledgemente wish to thank Roberto Amadio for suggesting the use of subtyping
for LAL typing, and Francois Pottier and Kazushige Terui for useful discussions. We are
also indebted to the anonymous referees for many accurate comments and suggestions.

2. Preliminaries

We give in this short section a few preliminary definitions and notations.

Lambda-calculus terms are defined by:= x| Ax.t | (+ t). We denote the set of free
variables of a termby FV ().

We denote byr{uy/x1,...,u,/x,} (or simply t{u; /x;} if there is no ambiguity) the
simultaneous substitution of terms for variablesx; (1<i <n) in termt (with the usual
discipline for avoiding variable capture). In the case where- u for 1<i <n we denote
itasr{u/x1,...,x,}

We denote by— the one-stegf-reduction relation on terms, defined as the contextual

closure of the reIationO» given by: ((Ax.r) u) 4 t{u/x}. Then ~ denotes the reflexive
and transitive clo§ure ob.
We denote by"—> theyn-reduction relation on terms, defined as the contextual, reflexive

and transitive closure of the relatiorh given by: Ax.(t x) L orifx ¢ FV(t).

Typing judgements in various systems will be denoted’ by : A, where[  is a set of
type declaration$’ = {x1 : A1, ..., x, : A,} and thex;s are distinct. Thel'(y) is defined
iff y = x; for 1<i<n, and thenl'(y) = A;. MoreoverI'\{y} will stand forI" if y # x;
A<i<n)andI'\{x; : A;}if y = x;.

We will consider words over a finite alphabet, with concatenation of vsawith word
s’ denoted asss’. The empty word is writtem. The length of a word is denoted a$s|.



4 P. Baillot / Theoretical Computer Scientd (1111) Ini—111

We will denote lists agay, ..., a,) and the empty list as Adding an elemena at the
beginning or end of a lidtwill be respectively written as :: [ and! :: a. Appending list’
to list1 will be written as/ :: I’

3. Introduction to light affine logic

We start with an informal introduction to the principles of Light affine logic (LAL).
Throughout this paper, by Light affine logic we mean in fact Intuitionistic light affine logic.

LAL controls the complexity of reduction of a term (or proof) by enforcing a strict
discipline on the duplication of subterms. It relies on two key features:

(1) stratification (2) two modalities (calle@xponentials ! and 8.

Point (1) means that atyped term is organized into strata or levels. This organization is static:
if a subterm is initially at level, its reducts will remain so during execution. Moreover if

a termt is fed with an argumenrd (Figs. 1 and?2) then in the resulting terrh, leveli will

only depend on the levejsor j <i of t anda (se€[5] for a semantical interpretation of this
property).

inputs (free variables) output
Ay
=
B
t _—
An
—=

Fig. 1. Representation of a typed term.

argument program result

reduces

a t b

level ¢ only depends on
levels j < i of t and a.

Fig. 2. Stratification.
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1A A B 'B
'B reduces
1A A B !B ¢
'B
1 A B !B
Fig. 3.! allows being duplicated.
1A A
—
1A
B 8B
_—
1A A
—

Fig. 4. 8 enables identification of variables.

How do we change level in a term? This is done with the modalities: applylrtg a
typed termr : B at leveli we get a term at level + 1; this term of type B can then be
duplicated during reduction (Fig). The! modality therefore has two roles: switching level
and allowing duplication.

Another system is based on stratification and!ttm@dality, Elementary Affine Logic; it
guarantees elementary complexity for the terms. LAL needs to be more strict to cut down the
complexity to polynomial time. Hence it requires that for applylitga termt (thus making
t duplicable) the term should haat most one free variabld his is a way of preventing
chains of duplications leading to exponentially long sequences of reductions.

However one has to switch levels also for terms with more than one free variable. This
is what the new modality § is introduced for. Applying § to a typed ternB at leveli we
get aternmy’ : 8B at leveli + 1, but this new term isot duplicable. Still, one advantage
of ¢’ : 8B is that it allows identification of free variables (with same types) and in this way
enables the duplication of other terms (FY.
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4. Typing in LAL
4.1. Type system

We want to type lambda-terms in LAL. LAL types are given by the following grammar
(over a denumerable set of propositional variables):

T:=o|T—T|!T|8T.

We stick here to the implicational fragment of LAL (witha®) for simplicity, but consider-
ing the case witl® would not add much difficulty. The(bang and § @eutral) connectives
are callecexponentials

We use a natural deduction presentation of the type-assignment system in the lines of
[7,8] (it can also be presented in a sequent calculus style @s3§). This formulation is
not as well adapted as that pioof-netg2,14]to the study of reduction, but it is easier to
understand for typing. The rules are given in Fg.

Conditions with Fig5:
(1) Theg;s belong tof!, 8} and satisfy: ifn > 2 thenag = § and ifap = ! andn = 1 then
a1 = .

The rule(prom) is calledpromotion If ag = ! (resp.ap = 8) we say it is d-promotion
(resp. 8-promotion). Note that condition (1) includes the restriction described in S8ction
one can apply &promotion only if the term has at most one free variable.

The rule(prom) is important as it is the only one to change the level : the level of term
increases by 1; this is displayed on the type by adding the exponegtial

A particular case of application gprom) is when then left premised ’;+; : a; A; are of
the formx; : a; A;Fx; @ a; A;; in that case we can simply write the application of the rule as

xX1: A1, ..., x, s Akt o B
X1:a1A1, ..., X, s anAntt :ag

B (prom).

Observe that this rule acts both on the type of the term and on those of the free variables,
adding one modality to each. In the case of §-promotionziR and sayi1 A1 = apAz = A
for example we can then apply a contractiorm@rand.xa.
We calldepthof a derivationD the maximal number of r.h.s. premises(pfom) rules
in branches oD.

I'tt: B
x:AFx: A (var) I' x:Art: B (weak)
I'ikt1: A—B I'ako: A I',x:Atrt: B
L 272 % (appl) - (abst)
I'1, Iy (1qtp) : B I'tlx.t: A—B

I'ibt1:a1A1 -+ Tpbty canAn x1: A1, ..., Xxn i Apkt @ B
Iy, ..., Iykt{rn/x1, ..., tn/xn} : agB
T 1A x1:'A,...,x, :'A, AFt : B
T, At{t /xq, ..., xp): B

(1)(prom)

Fig. 5. Type assignment LAL.
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Recall that proof-nets are a graph syntax for proofs in Linear L{it¢ and related
systems (we will not give here the definition of proof-nets). To any LAL derivafioan
LAL proof-net Rp [2] can be associated. The ryfgom) corresponds to introduction of a
box (either!-box or §-box) in the proof-net. Intuitively the derivation of the r.h.s. premise
of the rule is enclosed in the box. Thiepthof a proof-netR is the maximal number of
nested boxes iR; thus the depth db is by definition the same as the depthrys.

We have:

Lemma 1 (Substitutiof. If the judgmentd’tu : A andx : A, At : B are LAL-derivable
then so is the judgmeiit, A-7{u/x} : B.

Proof. By induction on the derivation of : A, A+t : B. [

Lemma 2. If I'tt : A is derivable andy is the normal form of t foip-reduction then
I'tto : A is derivable

Proof (Sketch) Consider a proof-neR corresponding to the derivation 6t : A and let

Ro be its normal form for cut-elimination. Then an LAL derivation can be retrieved from
Ro and the corresponding temgis obtained bys-reduction front. Finally, asRg is normal

the termrg is in normal form with respect tg-reduction. [

Note that Lemma states a weaker property than subject-reduction. Subject-reduction
itself, as pointed out by TeryR5] is not satisfied by LAL with respect t8-reduction.

This is essentially due to the fact that tfeontr) rule allows the use of sharing in type
derivations. Here is an example showing that typing is not preserved-byone step of
p-reduction):

consider the term= [(a (x (I ¥))) (x (I y)], with I = Az.z.

We haver — 11, wheret; = [(a (x ¥)) (x (I y)].

The judgement : A—!B,y: A,a : |B—!B—Clpart : C is derivable, but the same
judgement is not valid for;. This is because for typingone can use a sharing of the two
subtermsgx (I y)), whichis not possible faf. Note that LAL subject-reduction is however
satisfied by light affine lambda calcul{3], where sharing is explicit.

LAL can be seen as a refinement of simple types. Indeed if we denote by intuitionistic
logic (IL) the system of simple types, there is a forgetful map LAL — IL, obtained
by erasing exponentials and replaciargwith —. At the level of derivations we have:

Lemma 3. If Fpapt : Athenk;pt: [A]

The main property of LAL-typed terms is the following one, which is a consequence of
the results of1,14]:

Proposition 4. If Fp 41t : A—B is obtained by an LAL derivatiofr1, then there exists a
polynomial P such that

for any derivatiorD, of ajudgement; 4, u : A, if we denote by the derivation-(r u) : B
obtained fromD1 and D2 and by R the corresponding proof-néten R can be normalized
in P(Ju|) stepswhere|u| denotes the size of u
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Moreover the-normal form of the lambda-teriga «) can be extracted from the normal
form Ro of R.

Remark 1.

(1) Itfollows from this Proposition that i andB are data types themlenotes a polynomial
time function, because the polynomial step reduction of the prooRean be done in
polynomial time.

(2) The degree of the polynomial bounding the number of steps of the reductivordy
depends on the depth Bf As here we are considering the quantifier-free fragment of
LAL this depth is already given by the type—B.

(3) Instead of proof-nets one can also use light affiealculus[23] with the same bound
on the number of reduction steps.

With second-order quantifiers there is also a completeness resu2 (22p.

It is important to note that the statement of Proposidam®fers to the number of nor-
malization steps of proof-nets and not to {heeduction of the lambda-terra ) itself.
As pointed out in2], LAL-typed lambda-terms can have exponentially Igigeduction
sequences. Here is an example (adapted f&jm

Consider the ternt. = Ax.Ay.[[p1 (x ¥)](x y)] wherep; = la./b.a. It can be typed as:
Fr:1(lA—o!A)—o!(1A—0!A).

Now consider the family of termd7,, = (¢... (¢ (z I))...) with n >0 applications of,
and wherd = Ax.x. LetT, = (U, I).

Taking A = a—oq, the termT,, can be typed aBT,, : !!(a—oa) and the derivation has
depth 2 (so this depth is independentndf The termT,, reduces td and we define the
reduction sequencg by
soisgivenby:(I 1) — 1
ands, 1 is defined inductively by
Tiv1 — [(Ay.[pa (Un y)(Un YD 1]

- (11T, T)
R (p1 I T,) (reduction of I.h.s. argument)
2)
—

(p1 I I) (reduction of r.h.s. argument)
1.

Thus, denoting bys, | the number of steps of the sequengave get|s, 1] > 2|s,|, and
so|s,| > 2". The proof-net corresponding to the type derivatiof,phowever normalizes
in a number of steps polynomial |ff, |, hence polynomial im.

The proof-nets can be seen as an intermediate language into which LAL-typed lambda-
terms are compiled in order to be executed efficiently. Note that the proof-net of Proposition
4 is actually obtained from the type derivation of the term. Thus the LAL type derivation
does not only ensure that the progreambe executed with a certain bound but also provides
the necessary information to actually compile the term and perform the execution.

4.2. Modalities and subtyping

When typing lambda-terms we have to apply to certain types sevegalFor instance
we might want to identify two variablesg,, x» in a subternt : A, which leads us to give
type 84 tot, and then makeduplicable, which requires giving it the typ@A.
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Observe that if can be typed withA then it can also be typed with4§ it is sufficient to
replace in the derivation apromotion by a §-promotion. Similarly a term with typ&A
can also be attributed the ty{&8A or §!8A for example. More generally, to study typability
it is useful to be able to state which types can be replaced by which ones. For that we will
define a partial order on words ovgr §}.

We consider = {!, 8}* and call its elementsiodalities We define the ordex on £ as
the least reflexive relation ofi satisfying:

' < §
au < a'v’ witha,a’ € {!,8}iff (a<a’ andu<u’),
s < ¢ iff s=e.

Note that this relation is transitive by definition and that’ implies|s| = |s’|. Fora € {!, §}
we writea® for a . . . a with k repetitions.

By applying repetitively th&prom) rule (in the case = 0 orn = 1) one can derive the
following rule, forsg, s1 in £ such thato<ss:

x1: A1kt B Ft:B
X1 : sgA1kt : s1B Ft:s1B

For any value ofi ands; in £ (1<i <n) of lengthk >1 we can derive
x1:A1,...,x, Ayt i B
X1: 8141, .. Xp : SpAutt : 8B

We call these derived rulesultiple promotionsand denote them b§mprom.

We adopt the convention of identifying the typeandeT', wheree is the empty word.
We will consider variables for words, for which we distinguish two classesi¢dlored
variables, denoted as v, w ... are valued inz,

(i) monocoloredvariables, denoted gs ¢, r . .. are valued i 8}*.
Let these classes be denoted respectively,aandV,,, andV = V, U V,,. Of course a
monocolored word is equivalently given by its length.

We consider the reflexive and transitive relation on types given by

uo < u'o iff  u<u’,
u(A1—Az) < u'(Aj—A%) iff u<u', A]<A1andA;<A).

In fact we have:

Lemma 5. If A1 < Aj then there exists aterm t such that A1l 4.7 : A2 andt A X,
SO /x.t n Ax.x.

The idea of this lemma is that 1 < Ao then A1l A» is provable in LAL, not by a mere
axiom in general but by an expansion of axiom where only promotion steps are modified,
which gives as lambda-term grexpansion of identity.

Proof (Lemmab). The proof is by induction oved;. If A1 = u1A] andAz = uzA’ with

ui<uz and A} <A5, then by induction hypothesis:: AjFzazt : A with ¢ oy By

applying the(mprom) rule we described before we get: A1kpart @ As.
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I'tt: B

———— A1< Ay (var ————— (weak

x:Akx : Ap ! 2 (var) I",x:AH:B( )

I'1kbtp: Aj— B T'oktp: A I' x:Art:B

Cle 272- 72 A< Ag (appl)ihx (abst)
I'1, I'pH(1112) : B I'tix.t: A—B

bty cagAf o bty cagAj, x1:Ag, ..., Xp Akt B ,
a; A; <apA; (prom)X1)
Iy, ..., I'yke{t; /x;} : agB
Tk 1A CAq, ..., :Ap, AFt B
LA T 1A < A; (contr)
I, AFt{t" /xq, ..., xp}: B

Fig. 6. Type assignment LALs.

Consider the casd1 = B1—Bo, A» = Bj—Bj. We have:B,<B)j, Bj<B1. By i.h.

we gety : B/ll'LALfl : By andx : Bobpapty : Bé with a v, 12 n x. So we
havez : Bi—B2,y : Bifbrar(z 11) : B2. By Lemmal we thus get that : B1—B2, y :
BiFrart2{(z r1)/x} : By, and applying rulgabsy we havez : Bi—Bakpart : Bj—Bj,
fort = Ay.ro{(z 11)/x}.

Finally observe that by the hypothesis grandz, we have:

Iytal@m/xy B iy B odyey S oz

Therefore the induction hypothesis is valid fbt— A5, which ends the proof. O]

Lemmab suggests considering as a subtyping relation. Now we can reformulate our
type-assignment system using this relation: this is the system LALs (LAL with subtyping)
defined in Fig6.

Conditions with Fig6:

(1) if n>2thenag = 8.
Observe that LAL rules can be seen as particular cases of LALs rules. We have:

Proposition 6. If 'ty apt : AthenI'bp 74t @ A.
Converselyif I'tz 415t : A then there exists a termsuch that’ % andlFpart’ @ A.

Proof. As LAL rules are particular instances of LALSs rules, it is straightforward that
I'tpapt : AimpliesT'bpapet @ A.

For the other property we proceed by induction over derivatiords-gfy ;¢ : A.
o if the derivation is only an application of (var) rule= x, I' = x : A3 with A1 <A, we

apply Lemmab and get a derivation of : A1Fyazt’ : A with ¢’ I

o the cases of rules (weak), (appl), (abst) do not raise any problem.

o if the derivation is obtained by a (contr) rule from two LALs derivatidds and D2
respectively ofl'tr1 : 1A andxy : A1,x2 : A, Abtp : B (we assumer = 2 for
simplicity); the conclusion is

I, Arto{t1/x1, x2}.

By i.h. we get two LAL derivation®’ andD,, with termst;, t; andt; B gfori=1,2.
By Lemma5 as!A<A; fori = 1,2 we get termaw; with w; = x; and such that
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x! 1Ak aLw; : A; holds. By using these two judgments, the judgmant Ay, xz : Az,
Artp © B and Lemmadl (two times) we get

xj A x5 VA, Abpapty{wi/x1, wa/x2) ¢ B.

Finally applying rule(contr) to this last judgment anBtz; : !A we obtain’, Ay Apt" :
B, fort” = (t){w1/x1, wa/x2}){t1/x1, x5}.

As 1, kY to, w; n x! we have

% U
to{wi/x1, wa/x2} — tz{xi/xl, xé/xg,.}so t’_’ > to{r1/x1, x2}.
e the case of a (prom) rule is handled in a similar way to that of (confr).

This proposition is only stated to relate formally LALs to LAL. What is important is that
¢’ is extensionally equivalent to In practice one could execute directly LALs typed terms
with the same complexity bound as LAL typed terms by adapting in a straightforward way
the light lambda-calculus introduced by Terui[#8] (basically it would require allowing
substituting a 8§-typed variable by!ayped term, which does not alter the polynomial
bound).

Our main motivation for considering LALs instead of LAL is to make type inference
easier. However note that even before considering inference, as a type system LALs is more
flexible than LAL:

(1) typing is more versatile: a typed term can be applied to more arguments,

(2) the contraction rule is more general: identified variables do not need to have the same
type.

By (1) we mean that, for example: in LAL a term: (!1A—8B)—C cannot be directly

applied to an argument : 8A—!B; this needs firstetyping u or t, for instance retyping

u with type!A—8B (thus losing some information ai). In LALs the application can be

done with the actual types. Therefore LALSs typing allows for a more general usage of typed

terms.

5. Constraints

Before going on with typing, let us define the constraints we will need to consider. An
inequation on words iis a constraint of the following form:

ay...ap<apg41...a; (1),

where thes; s are constants or word variables:c V U L.

We denote by, s2... words overY U £, so an inequation is of the form=<sz. An
inequation syster§ is a finite conjunction of inequation§: = I1 A ... A Iy.

Given| (resp.S), Par(l) (resp.Par(S)) is the set of word variables (qrarameter}
occurring inl (resp.S). An instantiation¢ of S is a map¢ : Par(S) — L such that
for any p in Par(S) N V,,, ¢(p) € {8}* (¢ is compatible with colors We also denote
by ¢ the extension tdPar(S) U £)* given by: ¢(a) = aifa € L and¢p(ay...ar) =
P(ay) ... play).

An instantiationg of S = I1 A --- A Iy is asolutionof S if for any 1< j <N the
inequation/; holds when each variabteis replaced byp(a).
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Example 1. ConsiderS given by

u18uz < pius!,
Usg < u2§.

The instantiatiorp given by¢(p1) = 8, p(u1) = Pp(uz) = ¢, ¢p(u2) = ¢p(ua) = Pp(us) =1,
is a solution ofS.

Remark 2. Note that equations over words (on the binary alphabet) with concatenation (as
considered e.g. ifL2]) can be seen as a special case: an equatiens, can be encoded
as(s1<s2) A (52<51).

6. Abstract typing

Finding an LALs type derivation for a tertrbrings up two difficulties:

¢ finding the general form of the derivation, in particular where to do the contractions and
the (multiple) promotions;

o working outhow manynodalities to apply at each multiple promotion and choose between
!'and § for each.

To address the second point we will use types with variables instead of modalities (called

abstract typepand then try to find suitable modalities to instantiate the variables.
Asto the first point we will show that we can define a notionarfionical term construction

and that each term has a finite number of such constructions (SécBorfter that we

will be ready to describe our type inference method.

6.1. Abstract types

Let us callabstract typegypes built with word variablesl’ := «| T—T|aT, wherea
belongs toy U £. Remember that we identify” andT.

As with LAL there is a forgetful map from abstract types to simple types, which we
denote again as]. Denote byPar(T) the set of word variables appearingTin

Given an abstract typA we denote byA the abstract type obtained by removing the
external modalities and word variablesffA is defined inductively by

A =A ifA=ao0rA;—oAy,
(aA) = A.

Given aninstantiation¢ : Par(T) — £ compatible with colors, we defing(T) as the
LAL type obtained by replacing i word variables by their image:

(@) =,
P(T1—oT2) = P(T1)—P(T2),
¢aT) = (@) P(T).

Inequations on abstract typeSiven two abstract typeg andT», a solution of the inequa-
tion 71 < T> is an instantiationp : Par(71) U Par(T2) — L such thatp(71) < ¢ (T>).
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T(I1<T2)
T(sa<s'a)
T (s(A1—0A2) < S/(AELAOA/Z))

false if [T1] # [T»]
(s<5)
(5=<5") A T(AL < AD A T (A2 < A)).

Fig. 7. MapT.

(var), (weak), (abst) as in Fig).
I'1kty i s(A1—B) I'oktp: Ao
I'1, I'ok(1112) : B
Fibry: AY - Dbty 0 Ay x1:Ag, ..., Xn : Apkt i B

I'q,..., I'ybe{ti /x;} - vB
TH' G A x1:Aq,..., Xp i Ap, ARt : B
I, At{t /x4, ..., X} B

s =¢, A2< A (appl)

A7 <va;(prom) (2)

A< A, WA A; (contr)

Fig. 8. Abstract typing: LALa.

Fig. 7 defines a mafi” from inequations on abstract types to systems of inequations on
words (it follows directly from the definition of the subtyping relation). For a technical
reason we will need to consider thatcan also be applied to inequations on words (acting
as identity):7 (s1<s52) = (5s1<52).

Lemma 7. A map¢ is a solution of the set of inequations on abstract tyjpes< Ao, . . .,
A1 < Agey2) iff it is a solution ofAK_ T (Azi1 < Aziv2).

An abstract type derivatiofa.t.d,)D is a derivation of judgements with abstract types,

built from the rules in Fig8.

Conditions:

in (prom): (2) ifn >2 thenv € V,, elsev € V.

in (contr):u € V, and isfresh(does not appear in the rest of the derivation).

In fact all we want to impose fofcontr) is thatA is of the form!A’A, for someA’, and
thatA < A; for 1<i <n. This is equivalent to the solvability of <!uA < A; with a fresh
u. Condition (2) on(prom) is analogous to the condition (1) we had for promotion in LAL
and LALs.

The inequalities associated to the rules are not seen as conditions for the application of
the rule as before, but as constraints which are added to the derivation. Note that for (appl)
we use a constraint directly expressed on wasds: e, which can be equivalently written
ass<e.

The set of word variables occurringInis denoted byPar(D) and given an instantiation
¢ compatible with colors we defing(D) as expected. An instantiatiafis a solutionof
D if ¢(D) corresponds to a valid LALs type derivation. Hence we can state:

Problem 1(A.t.d. instantiation problem¥siven an abstract type derivatidp, does it have
a solution¢?
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I'tt: B

- _ b5 K
x:AFx: A (var) I' x: A+t B (weak)
I'ibt1: A B I'sktp: A I',x:Art: B
2= 2 272 8 (appl) U (abst)
I'1, I'H(1119) = B I'tlx.t:A— B

ikt A1 - Tpbty Ay x1:A1q, ..., Xn . Apkt i B
Iy,..., I'ykefti/x;} : B
I @A x1:A,..., xp A, At B

(prom)

(contr)n>2

Fig. 9. Type assignment ILS.

'kt
—_— Kk
xkx (var) I, xtt (weak)
I'1kty ok I, xtt
L1 22 (appl)—— (abst)
I'1, I'k(1112) I'tix.t

ikt oo Tybty x1,..0, xpkt
Iy, ..., Tyttt /xi}
I+ Xyenns xn, Akt
L, At{t' /xq, ..., Xn}

(prom)

(contr)n>2

Fig. 10. Rules for term constructions.

We will address this problem for a restricted class of abstract type derivations that we
will define in the next section (canonical derivations).

6.2. From term constructions to abstract derivations

From now on we consider LALs derivations with multiple promotionglis an LALs
derivation, we denote HyD]the tree of judgements obtained by replacing each LAL formula
A by [A]. Then[D] is a simple type derivation that we caimple type skeletoof D. We
want to give a direct description of simple type skeletons.

Given a ternt let us denote by V () the free variables occurring inWe consider the
typing rules for simple types of Fi@, with the conditions:

(1) in rule (contr) we require that > 2 and thaty, ..., x, belong toFV (¢),

(2) in (prom), all x; should belong taV (z).

We call this set of rules ILS (intuitionistic logic with sharing). Derivations in this system
will allow us to handle simple type skeletons of (some) LALs derivations.

We might even want to keep less information from LALs derivations and erase types
altogether. For that we consider trees of judgements of the fdrmwherel” is a set of
variables and is a term built from the rules in Fid.O (adapted from ILS rules) and with
conditions (1) and (2). We call such a treieem constructionNote that to any ILS or LALs
derivationD we can associate a term construction by erasing all type annotations; we will
denote it ag/ (D).
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Let us fix some vocabulary for LALs derivations, ILS derivations and term constructions.
We say an application of thggrom) rule isbasicif all #; are variables and all; have only
one variable. We say an occurrence(@kak) rule D is terminal if it is the last rule ofD
or if it is followed only by a sequence @fveak) rules.

Definition 1. A term construction is canonical if a bagierom) is never r.h.s. premise of
another(prom) and eachweak) rule is either terminal or followed by aabsy rule on

the weakened variable. An ILS (resp. LALS) derivation is canonical if the associated term
construction is canonical.

We have:

Lemma 8. If I't7 415t : A then there exists an LALs derivati@hof this judgemenfpos-
sibly using multiple promotionsuch thaD] is a canonical ILS derivation

Proof (Sketch) Consider an LALs derivatiof® of I'tr : A. If D contains an occurrence of
(weak) which is not terminal and not followed by d@abs) rule on the weakened formula,
then we can commute this rule top-down with other rules until it meets either:

(i) a (prom rule,

(ii)y a (contr rule on the weakened formula

or (iii) an (absy rule on the weakened formula or a termiakak) rule.

In case (i) we remove the premisets; : A; of (prom) corresponding to the weakened
formula A; and add insteadweak) rules onl’; after (prom). In case (ii) we remove the
(weak) rule, which decreases the arityof the (contr) rule. Repeating this procedure we
eventually get an LALSs derivatioR; such that anyweak) rule is terminal or followed by
an (abs) rule on the weakened formula.

The derivationiD; can still contain(contr) rules of arityn = 1. For such an occurrence
(contr)g one can perform commutations of rules until the r.h.s. premiseaitrg is a
(var) rule; in this last case we remove bationtr)g and the(var) rule. This way we obtain
an LALs derivationD; satisfying the same conditions & and such that all itgcontr)
rules have arity: > 2. It follows thatD, satisfies conditions (1) and (2) from above and
[D2]is an ILS derivation.

Finally we turnD; into an LALs derivatiorD3 such thafDs] is a canonical ILS derivation
by replacing if necessary some consecutive promotions by one multiple promotiah.

Proposition 9. There is an algorithm that given a term t gives all canonical term construc-
tions of FV (¢)Ft; there is a finite number of such canonical derivations

A proof of this proposition is given in Appendi.

Definition 2. We say a term constructiofy of x1, ..., x,+ admits ILS type judgement
X1 A1,...,x, ¢ Aykt 2 B if there is an ILS derivatiorD of this judgement such that
T(D) = T1.
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FI1 y z1,22F(y 21 22)
ykt

(contr)

Fig. 11. Example for Remar&

Proposition 10. The term constructions admit the principal typing propéfty ILS type$:
let 71 be a term constructigrihen it admits an ILS type judgement: A1, ..., x, : Akt :
B (called its principal typgsuch that anylts : C is an ILS type judgement @i iff it is of
the formxy : 6A1, ..., x, : dA,Ft : 0B, whereg is a substitution on type variables

Remark 3. Note that the principal type of a term constructignof 'tz is not necessarily
the principal type of, because of sharingdontr) rule). For instance consider the term
t = (y I I). It has principal typey : (01 — o1) — (02 — a2)—fitt : . However if T
denotes the term constructiontagnding with the rule of Figll (and the rest of the term
construction done in the natural way), thgrhas principal type : (61 — o1) — (01 —
o) — Pkt p.

Finally we have:

Proposition 11. Assume there is an LALs derivati@hof I'Ft : A with associated term
construction/; = 7 (D). If 71 admits ILS principal typelts : B then there exists an LALs
derivationD’ with conclusion’F¢ : A’ such thafI’] = 4,[A'] = B andT (D) = 7.

Aresult of this kind was proved if9] for elementary affine logic (EAL) type derivations.
However in the system EAL considered in this paper sharing was not allowed and we cannot
here adapt directly this result to our purpose. Therefore we give a self-standing proof of
Propositionl1in AppendixB, using some techniques froj9.

Given asimple typAwe define its sef d (A) of free decorations in LAL#n the following
way:

o if Ais an atomic type: then fd(A) = {ua, u € Vy},
o if A= A1 — A, we take:

fd(A) = {u(A1—Az), st.A; € fd(A;),Par(A1) NPar(Az) = #,u ¢ Par(4;)

fori =1, 2}.
The idea of interpolating modality rules into an intuitionistic derivation in order to find
the EAL derivations of the corresponding term was the original ide8JofHere, given
a canonical ILS derivatio® we decorate it into an LALa derivatioR by attributing to
each occurrence aprom) a fresh parameter. More formally we defifieby induction
onD:
e if Dis simply a(var) rule onA, we takeA1, A, in fd(A) with disjoint parameters and

Dis an LALa(var) rule of conclusionx : Aqkx : Ao;

e if D is obtained by(weak) onDy with A, we takeA in fd(A) with parameters disjoint

from those ofD1, andD is obtained by(weak) on D1 with A;

e if D is obtained byabsh onD;, defineD by (absh onDy;
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e if D is obtained fromDy, D> by a (appl) rule (resp.(contr)) we can assum®z, Do
have disjoint sets of parameters (otherwise rename their parameterB)iarubtained
by (appl) (resp.(contn) on Dy, Dy;

e if Disobtained fronDsy, ..., D,, Do by a(prom) rule, we assume as before thehave
disjoint parameters, take not occurring in theD; and belonging ta),, if n>2, V), if
n<1, and definé by a(prom) rule on theD; with parametep.

We callcanonical abstract derivatio(t.a.d.) an LALa derivation obtained in this way from

a canonical ILS derivation. We finally have:

Lemma 12. The judgmeni't; 475t : A is derivable iff there exists a canonical abstract
derivationD with a solution¢ such thatp (D) is a derivation ofl 'k 47t : A.

6.3. From decorations to constraints

Now, given atermt with FV (r) = {x1, ..., x,} our method for deciding of its typability
in LALs is the following one:
e using Propositio® enumerate the canonical term constructions;of . ., x,+¢;
e using Propositiod 0 determine the principal types of these canonical term constructions
and the corresponding canonical ILS derivati@hs. .., D,;
e using the decoration procedure enumerate the corresponding canonical abstract deriva-
tionsD}, ..., D,
e for each such canonical abstract derivatidrsearch if it has a solutiog, in which case
we get an LALs type derivation (D)) for t.
By Lemmal2 we know that a solution to this procedure will yield a suitable LALs type
derivation for the termt. Conversely if the ternhis LALs typable then by Propositiohl
and Lemmal2 we know that the procedure will provide a canonical abstract derivatjon
which has a solutiorp. So what remains to be done to prove the decidability of typability
is to establish that finding a solution of a c.a.d. is decidable.
We associate to an abstract derivatidra set of typing constraintngD) in the fol-
lowing inductive way (keeping the notations of F&):

ongD) = {A1< Az} if D = (var),
CongD) = (GongD;), if Dis obtained fromD1 by (abs) or (weak,
CongD) = CongD1) U ong Do) U {s<e, Ao < A1}

if D is obtained fronDy, D, by (appl),
CongD) = U'_,CongD;) U {A! <vA;, 1<i <n},

if D is obtained fromDy, ... D,, Do by (prom),

CongD) = CongD1) Uong Do) U {A< A, A< A;, 1<i <n}

if D is obtained fronmD1, D, by (contr).

Given an abstract derivatidR, we know by lemmé’ that a mapyp is a solution ofD iff

¢ is a solution of the system of inequationgCongD)). Say a system of inequatiossis

a canonical abstract derivation systefo.a.d. system) if there exists a canonical abstract
derivationD such thatS = 7 (CongD)).
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7. Solving the constraints
7.1. Stratification

Now we want to solve c.a.d. systems of inequations. Note that if wetpaationsnstead
of inequations we could apply Makanin’s theorem which shows decidability of such systems
(see for instancflL2]). But we know of no general result which would apply to the systems
of inequations we are considering. However we can here take advantage of a strong property
of the systems we are interestedstratification

Definition 3. Let S be a system of inequations agdbe a solution. Say is astratified
solutionof S if there exists alepthfunctiond defined orPar(S) and the (occurrences of)
constants irsS, with values inN, and such that:
(1) fors<s’in S with s = u1s1, s’ = uzso we haved (u1) = d(u2),
(2) fors = uy...u, a member of inequation we havé(u; +1) = d(u;) + |p(u;)].
If s = uy...u, we also definal(s) asd(u1) andind(s) (internal depthof s) as
dun) + 1 Qun)|.
We say a systen§ is stratified if all its solutions are stratified (so in particular if it has no
solution).

Considering a stratified solutigh, d and an inequatiot) of the system, if7) = s1<s2
we will denoted (1) = d(s1) (S0 alsad (s2)) andind (1) = ind(s1) (alsoind(s2)).

Example 2. Consider the syste&i given in Fig.12. It does not have any stratified solution.
Indeed, assume there was opeawith depthd. Inequation/; implies that|¢(u2)| = 1.
Inequationl, tells that¢p (u3) # ¢ (because §! does not hold) and s@h(u3)|>1. By I»
we haved (u2) < d(u3), and byls: d(u3) >d(u2), hence a contradiction.

Proposition 13. If S is a canonical abstract derivation systethen it is stratified

The notion of depth defined here coincides with the notion of depth considered in proof-
nets and mentioned in Sectidn

Proof (Propositionl 3). We define two new functions(., .) andI(., .). If w is an occurrence
of parameter in an abstract typethenk(w, A) is the list of parameters in the scope of
whichw is, in A. For instance
if A =ujur(pruzc—ouqwp2f5) thenk(w, A) = (u1, uz, us).

We consider a canonical abstract derivationLet R be an occurrence of rule iR. We
denote byl(R, D) the list of parameters associated to promotion rules with right premise

§ < up I
u18 < uplug I
uzuy <X lug I3

Fig. 12.
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belowRin the derivation tre® (excludingRitself): if Ris the last rule oD then/ (R, D) =

¢, otherwise assuming occurs in derivatiorDg, then

e if D is obtained fronDg by a (prom) with parametar andDy is right premise of the
rule then/(R, D) = v :: [(R, Dy);

e if D is obtained fronDg by a (prom) andDg is not right premise, or iD is obtained
from Dg by another rule theh(R, D) = I(R, Dp).

Finally we define for a parameteroccurring inD a listl (v, D):

e if visintroduced by a promotion ruRthen:/(v, D) = I(R, D),

e if visintroduced by a contraction ruRthen:/(v, D) = (R, D) :: !,

e if visintroduced by a (var) rulR of conclusionx : Ajkx : A2 andv occurs inA; then:
[(v, D) =1(R,D) :: k(v, A;).

Note that this definition makes sense becéallss a canonical abstract derivation and so

each parameter is introduced by at most one rule (and in the case of (var) appears in only

one of the two formulagi, Ap). O

To simplify the notation we will writé (R) (resp.l(v)) for [(R, D) (resp./(v, D)) when
there is no ambiguity.

Now, assume we have a solutigrof D. We want to prove that this solution is stratified.
For that we define a functiafi(.) on parameters in the following way:
d) = Y i 1 lp@)| if 1) = (vn, ..., v1),
dlv) =0 if [(v) is the empty list.
We need to show that andd(.) satisfy conditions (1) and (2) of definitich For that we
use an intermediary lemma, whose proof is given in appe@dix

Lemma 14. If parameteru; (resp.uz) occurs inBj (resp. B2) and constraintB < Bz is
associated to rule Rhen

l(u1) = I(R) = k(uz, B),

l(u2) = I(R) :: k(uz, B2).

Letus show thap, d satisfy condition (1). Let<s’ beinS = T (CongD)) with s = u1s1,
s" = upsy: there exists a rulRof D with constraintB; < B, suchthats<s’ € 7 (B1< B).
Then eithenty; € By anduy € B, oru; € B anduy € Bi. Let us assume for instance we
are in the first case (the second one is similar).

By Lemmal4we have

I(u) =1(R) :: k(uz, By), 1)
l(uz) =1(R) :: k(uz, B2). 2
Letusdenoté(u1, B1) = (vy, ..., v1),k(u2, B2) = (wy, ..., wi). As¢ is a solution ofD

we havep(B1) < ¢(Bz), which in particular implies tha""_; [¢(v;)| = Z’;‘Zl [p(w;)l.
So from equalities (1) and (2) and the definitiondofve getd (u1) = d(u2); condition
(1) of Definition3 is thus satisfied.
Let us examine condition (2) of definiti®d Lets = u3 ... u, be a member of inequation
of S. Thens appears in a formula of a constraint associated to a ritesou; andu; 1
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both appear i\, and by lemmad.4we have

l(uiy1) = I(R) :: k(uiy1, A),

lui) = I(R) = k(u;, A).

As the sequence; . . . u, occurs inA we have
k(“l‘+1’ A) = k(”iv A) LU,

SO [(uj+1) = I(u;) :: u;.

Hence by definition off: d(u;11) = d(u;) + |¢(u;)|. Therefore the solutiorp is strati-
fied. O

Now we have:
Theorem 4. Given a systens, the existence of a stratified solution is decidable

This theorem will be proved in the rest of this section. From these two results we can
then deduce:

Theorem 5. The existence of a solution for a c.a.d. system is decidable
With Section6.3we then get:

Corollary 6. The derivation instantiation probler(Problem 1) for canonical abstract
derivations is decidable

and from that our main result follows:

Theorem 7. Given a lambda-term t witlr V(1) = {x1, ..., x,}, one can decide whether
there exists an LALs derivation of conclusion: A1, ..., x, : A Frarst @ A.

Let us come back to the proof of theoreimWe will consider two characteristics of
systems of inequations:
e themeasureof a systenmess) is the number ofs in right members of inequations of
S (similarly for the numbemesZ) of !s in the right member of inequatidi
o thesizeof a systemS| is the number of inequations 6%,
Let us first point out an easy case: when the system does not haveaight members:

Proposition 15. If meqgS) = 0then one can decide if there exists a solution

Proof. The key is that one can look for a monocolored solution, that is to say with words
in {8}*. Indeed assume is a solution, then defing by: for anyu, y(x) = & where
k = |¢(u)|. Then as there are dan r.h.s. members of, and ad<8 the mapy is also a
solution ofS.

Now, a monocolored solutiogr is completely defined by the lengthf(u)|, so to find
whether there is one it is sufficient to solve the system of linear equations (over integers)
obtained by replacing the word parameters by length parameters.
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7.2. Informal description of the algorithm

We now give an algorithm to decide whether a system has a stratified solution. When
applied to a stratified system the algorithm will thus allow to find a solution or determine
that there is none.

In fact we give a non-deterministic algorithm and we will then justify how to transform
it into a deterministic one. The idea of our algorithm is to non-deterministically reduce the
solving of S to the solving of a system with ridn right members (measure 0), which is a
problem we saw was decidable. To do so we want to progressively eliminate the occurrences
of ! in right members of inequations.

Take an inequatioms . ..a,=<s1lps2 (1) of S. We can assume thes are characters
(! or 8) or word variables. After instantiation by a solution, the two words on each side of
should have same length, and!'&$ if k is the position of the charactgyon the r.h.s., the
character in positiokon I.h.s. should bé If we can guess which; contains this character
we can replacéwith

aj ajila;j,
ai...aj-1d;j1 < §1,
<

ajdjil...4y 52.

First observe that this guess can be successful onlyid a bicolored variable (a;) or a
! character. In the last cagg; anda;» are taken to be. So to simplify (without avoiding
the difficulty) we can assume tlag’s are all bicolored variables.

The real problem is that; might appear in other inequations, possibly in r.h.s. members
and that replacing; with a;1!a ;> we have introduced neg in r.h.s. members. Let us call
theses and those that will appear when we try to eliminate them in the sameeagijtials
of !o.

Now, a naive non-deterministic algorithm could proceed by repeating the following task:
choose donr.h.s.; eliminate it and eliminate its residuals. When reacliwith mesS) =
0 solve it and track back a solution to the original system if there is one. However this
procedure does not terminate in general. If we consider the tree of all its non-deterministic
runs (with systems as nodes, and a branching for each choice of inequation splitting) it has
infinite branches.

Our algorithm will refine this procedure by pruning some branches of the search tree, thus
keeping only finite branches. The key feature is that we only look for stratified solutions,
so at some points we already know that no stratified solution will be found and we can give
up the search.

The algorithm will proceed byounds each round consisting in eliminating or@an r.h.s.
ofinequationand allits residuals inr.h.s. members. Atthe end of a round the mess(Se
will have decreased by 1. A round will be divided irstiepsconsisting in eliminating ar.h.s.

! (the way we just sketched) and creating residuals. Basically, the trick is that a member
of inequation cannot get twice a residual of the sdmeghere will be a possibility of
interrupting a step (hence stopping the current execution without giving a solution) if we
get into a configuration with no stratified solution. In such a case the algorithm should be
run again.
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If S does not have any stratified solution then all executions end with an interruption or
a S’ with megS’) = 0 and no stratified solution. § has stratified solutions, then at least
one of them is reached by an execution.

7.3. The algorithm

We will handle the following data:

e R:set of equations. InitiallyR = ¢;

¢ S system of inequations handled as a set. Initi&lig the systen® to be solvedS and
S are disjoint subsets & such thatS = SU S;

o stackP of inequations with one marked occurrence ioftheir right member (we denote
them as pairs/, !o) wherelg is an occurrence dj. The elements dP belong toS.
During the whole runS is the current state of the systeRkeeps track of the variables

we have deleted and how to retrieve their values from the current variables.

During aROUND S is the subset of inequations tmaightcontain residuals of the current

lo; P contains the inequations Sfwith residuals ofp; S is the subset of inequations &f

that cannot contain residuals 'gf
Notation we denote byS(s — u) the result of the substitution in a syste&hof inequa-

tions of all occurrences of a variahldy the words.
The algorithm is then given by:
o repeat the ROUND until getting a systefhwith megS’) = 0.
ROUND:
0 S:=8; S:=0; P:=e¢(emptystack;
o take inS an inequatiort; with meg/;) > 0 and!g in the r.h.s. member af:

Ii: up...u,<s1los2

o push(l;, o) onP.
o repeat the following procedure unfil = ¢:
STEP:
pop(l;, o) fromP: I :  wuy...u,<s1los2
guess:; (bicolored variable of) such thatg “belongs” tou ;;
S = (S\{IID(ujrlujo — uj)
S = (SU{ur...uji<s1 ()Y ujz. . up<s2 (I2)}
if S contains an occurrence of: STOP.
S =8SuUS
R :=RU {uj = Mj]_!btjz}
if u; is a variable, push oR the inequations of in which au ; has been replaced
in the r.h.s. (i.e. containing residuals in the r.h.s.)
end of STEP.
end of ROUND.
e When we havenesS) = 0 we compute the existence of a (monocolored) solution, and
if there is one, usin@R we track back a solution of the original systeim
We give an example of run in Appendix
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7.4. Properties of the algorithm

7.4.1. Termination

Each STEP trivially terminates since it contains no loop. Each ROUND does also ter-
minate because STEP decredsidy 1. Now let us observe that each ROUND decreases
mesgS) by 1. Indeed a ROUND selectgg@n ar.h.s. ofS and removes it. During a ROUND,
the only! that can be added in r.h.s. membersSoére residuals of th&). The residuals
of loin S are stored irP and removed; if a residual is to appearSrthe algorithm stops
(line 5 of STEP). So each ROUND does decraasgS) by 1, hence the non-deterministic
algorithm terminates.

Remark 8. Note that the crucial argument for termination is the fact that STEP decrements
|S|, which comes from line 3 of STEP:
S =S\ {IiD(ujrlujz — uj).

This means that the algorithm will not try to remove residuals from the inequatigns
and (1;2) coming from (/). In fact if S contains an occurrence af; in an r.h.s., then
the algorithm stops (line 5 of STEP): the reason for that is that in this case the remaining
reachable solutions of the system are not stratified (so we prune the corresponding subtree
of the tree of possible executions). Indeed the algorithm is not complete with respect to all
solutions, but only with respect to stratified solutions.

We can give an explicit bound. The number of ROUNDS is boundeché&gS). If we
denote bysS; the system at the beginning of tiita ROUND, the number of STEPS of
ROUNDI is bounded byS;| = |S;|. At each STEP the size of the system increases by 1.
S01S;11] <2|S;]. In conclusion the length of any run is bounded BJE2S) . |S|.

7.4.2. Correctness

It is rather easy to check correctness: consider two consecutive states of the system
denoted as; andS; ;1. Remember tha$; ;1 is obtained frons; by splitting an inequation
I; in two. Assume we have a solutignof S; 1, then keeping the notations used before we
defined(u;) := Y u ;)Y ;2) andg(v) := Y(v) for the other variables. It is clear that
is then a solution of;. So if we have a solution of the final system, it can be lifted back to
a solution of the initial systerp using the equalities ifR.

7.4.3. Completeness
Let us now examine the completeness issue, which is more delicate. Ashuinas a
stratified solutionp with depthd and let us show that there is a run of the algorithm leading
to this solution. We describe one possible execution of the non-deterministic algorithm,
using the knowledge of, d. We denote byd the depth function at any moment of the
execution (its domain is extended to the variables introduced during the execution).
During one ROUND we try to eliminate a r.h!g.and its residuals. The important point
is that this ROUND proceeds at fixed depth, that is to say that the redeltialve the
same depthlp as!p. An inequations;<s2 can contain a residual df only if it satisfies
d(s1) <do < ind(s1). The execution of the ROUND has the following invariant:
for any inequation1<s2 of S we haved(s1) > do orind(s1) <dop. (¥)
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Consider one statgof the system with stratified solutigh d.We consider the inequation
uy...up<stlos2 (1)) from the top of the stack. Lgtbe such that/(u ;) <do < d(u;11)
(ord(u,)<dp andj = n). We choose; in this STEP and1) is replaced by

up...uj1 < s1 (),
ujp...up < s2 ().

Call 8’ the new system. Defing’ onPar(S’) by

¢’ (v) =) forv # uj,
@' (uj1) =11 prefix of p(u ;) of lengthdo — d(u ;) — 1,
¢'(uj2) = 1 suffix of ¢ (u;) of length|(u ;)| — |’ (u;1)| - 1.
We also define in the same waywith @’ (uj1) = d(u;), d'(u;2) = do+ 1. Thend’, d’ is
a stratified solution of’.

Soif S has a stratified solution thefi has a stratified solution. Moreover 6f we have:
ind' (I;1) = do, d'(I2) = d'(uj2) = do + 1. So execution of line 4 of STEP preserves the
invariant (*). Indeedl;; and;2 cannot contain any further residuallgf which is why we
don'tinclude them irS’.

This execution will therefore terminate with a systé&thwith mesS’) = 0 (without
raising STOP). The systeSi has a solution from which we can get a stratified solution to
the initial system.

7.4.4. A deterministic algorithm

Observe that at each STEP the non-deterministic choice is between a finite number of
possibilities (the characters and word variables on the I.h.s. of the inequation currently
examined). If we represent the runs of the non-deterministic algorithm as a tree we have
finite branchings and all branches have finite length. Therefore a brute-force algorithm can
deterministically completely explore the tree and solve the system.

8. Conclusion and future work

The study of Linear logic proof-theory made possible the introduction of systems captur-
ing complexity classes such as Light linear logic or more recently Soft linear [[bgjcor
polynomial time. We wanted here to make the point that this domain can be interfaced with
typing techniques, for instance by taking advantage of type-theory tools such as subtyping
or constraints solving. We followed the approach of using light logic as a non-standard
type system used on ordinary lambda-calculus to verify a complexity property, namely that
the programs can be run with a polynomial time bound (using proof-nets or light affine
lambda-calculus as intermediate language). The first step in this direction was to establish
decidability of type-inference, which we did for the quantifier-free fragment. For that we
considered constraints on words; we showed that the systems arising in our setting satisfied
an important regularity property linked to stratification and gave a decision procedure for
these systems.

Several questions arise at this point. Can this approach be partially extended to the
polymorphic setting, for instance if we start from a system F-typed term rather that from
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an untyped term? The practicability of type inference and its modularity should also be
investigated. We considered as source language here stafdatdulus for the sake

of generality, but as in the procedure one has to first choose a suitable sharing of sub-
terms (Sectior6.?) it might be more reasonable in practice to start with an interme-
diate language with explicit sharing possibly as[#}, or a generalization of the one

in [23].

Appendix A. Proof of Proposition 9
Proof. We want to establish decidability and do not try here to give an efficient algorithm.

We want to construct, proceeding bottom-up, all possible canonical term constructions
for I't. To show that this procedure terminates we provide a bound on the height of the
branches of the derivation trees; it is then enough to observe that we can bound the arity of
each rule and the search-space for the derivations will be delimited.

We consider the size function on lambda-terms given by

Xl =1 [Cwl=lt]+ul, |ix.t]=]]+1

Letn(x, t) denote the number of (free) occurrences of variabtetermt. We consider
another function taking into account the number of repetitions of free variables:

rept) = Y. (m(x,t)—1).

XeFV ()

We consider the following measure on judgements, with lexicographic order:
mesI'tt) = (|¢], rep(r), #I'),

where #” denotes the length df.

Now let us examine the various rules (applied bottom-up) and whether they make this
measure decrease. Rulepp!) and(abs) make the size of the term decrease, so the measure
of the judgements too. Theveak) rules leavesr|, rep(r) unchanged but the length of the
context decreases.

Consider thecontr) rule. As we required that >2 andx, ..., x, € FV(¢), if ¢’ is not
a variable thent{t'/x1, ..., x,}| > |t| and|t{t'/x1, ..., x4} > ||, and so the measure
decreases. If’ is a variable thens{t'/x1, ..., x,}| = |t|, butrep({t'/x1, ..., x4}) >
rep().

Let us examine théprom) rule. If it is not basic, that is to say one of theis not a
variable, then by the condition that € FV () we get:|t{t;/x;}| > |t|. A basic(prom)
however leaves the measure unchanged.

So basic(prom) is the only instance of rule that leaves the measure unchanged. But it
follows from the definition of canonical term construction that there are no two consecutive
applications of basi¢prom). Hence the height of a branch is bounded bw@s1'+z : B),
wherel '+t is the initial judgement. [
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Appendix B. Proof of Proposition 11

The proof of Propositiord1 will require some intermediary definitions and results. The
key result will be Propositio21.

B.1. LALs inequations and type variables substitution

LetZ denote a set of inequatiofif < U;, 1<i <n}where thel; andU; are LAL types.
We consider the problem of finding a substitutiofrom type variables to LAL formulas
(calledLAL substitutiopsuch that'T; < oU; holds for any X i <n. Note that this problem
is notthe same as the one considered in Seétibwhere we were searching substitutions of
word variables solving a system of inequations (in that case type variables were unchanged).
Let [Z] denote the set of IL equationg] = {[T;] = [U;], 1<i <n}. The problem of
finding a substitution mapping variables to IL types (IL substitution) satisfyifigs a
unification problem and if it has a solution there isvastgeneral unifier (m.g.u.).
If g is an LAL substitution[a] will denote the IL substitution defined By](a) = [a(a)]
for all type variables. Note that:

Lemma 16. If ¢ is a solution ofZ then[o] is a solution ofZ] .
Now, to relate solutions dfZ] to solutions ofZ we will consider a new operation on LAL
types. Given an IL formul& we define a partial map)|r from LAL formulas to LAL
formulas by
Al _ Ju(A1lp—A2|r) i A=u(A1—A),
h~F = undefined  ifA = up} (§ type variable)
Al, = uo, if A=u(A1—Ap) or A =up.
The following lemmas can then be easily verified:
Lemma 17. If A|F is defined thefA|r] = F. Moreover for any A we havé|j4; = A.

Lemma 18. If Al is defined then for any u ¢f, 8}* we have (uA)|r = u(AlF).

Lemma 19. If A, B are LAL formulaswe haveA < B holds iff [A] = [B] and for all F of
IL, A|F is defined iffB| ¢ is definedand A|r < B|F.

Lemma 20. If Ais an LAL formulaF an IL formula ¢ an IL substitution andA] = ¢ F,
thenA|r is defined

We are now equipped to prove the following proposition:

Proposition 21. LetZ be a set of LAL inequations. If admits a solution and denotes
the m.g.u. ofZ] then there exists a solutianof Z such thafo] = 7.
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Proof. AssumeZ has a solutiow and let us introduce a solutiaery such that{og] = 7.
We define the LAL substitutiong by: goa = (6|, for all type variables:.
The fact thatoa is well defined for alb: follows from Lemma20, the fact that is m.g.u.
of [Z] and thaf{¢] is a solution of( Z].
We then obtain:

Lemma 22. For all formula A of LAL we have (6A)|;4 is well-defined andbpA =
(0A)|za.

Proof. By structural induction oA, using the definition ofg, of (.)|r and Lemmds8. O

Now, letA < B be an inequation df. As ¢ is a solution ofZ we haveisA <oB (*).

As [A] = [B] is an equation ofZ] andz is a solution ofZ] we havex[A] = t[B].

By Lemma22 (6 A)|.4 and(aB)|.p are well-defined.

Then by Lemmal9 ast[A] = t[B] from (*) we get:(cdA)|.4 < (6B)|.5. So finally by
Lemma22: 6gA < ogB. Thereforesg is a solution ofZ. [

B.2. Relating LALs derivations to simple type derivations

In this section we will use a calculus and methods inspired f@mindeed for proving
PropositionlOwe need to use a term syntax for LALs proofs. Light affine lambda-calculus
[23]is an efficient tool for this purpose, but as we do not need here to establish computational
properties on these terms but wish to have a syntax close to the presentation of LALsS we
adopted we use a term calculus analogous to thi,8f) for Elementary affine Logic.

The set of LA-terms1%4 is defined by the grammar:

M = x| Jx.M | (M M) | tM [M/Xl,...,M/xn] | [M]szl,‘..,x,,,

where T stands fdror §.
Theerasureof an LA-termM is a lambda-ternd/— defined by
(tM [My/x1, ..., My/xy )™ = M~ {Mq /x1, ..., M, /x,},
([M]Mlle,.,.,x,l)i = Mﬁ{M]__/xlv cos X
and(.)~ commutes to the other constructions.
We say an LA-termM term isvalid if any variable occurs at most oncehand if for
any subterm of the fort/ [M /x1, ..., M /x,] we haven <1.
The rules of LALs can be seen as typing rules for LA-terms, by adapting in the straight-
forward way the rules of Figg: the only changes are @prom) and(contr):
Fli—MlialA& coo TpbMy i ap Al x1: A1, ... %t AgkM @ B
I'y, ..., I'yFaoM [M1/x1, ..., My, /x,] : aoB
I'rMq:'A x1:A1,...,x,: A, AFMy : B
r, A'—[MO]M1=X1,...,)C,, ' B

a; A} <apA; (prom)

1A < A; (contr)

with for (prom) the condition:
(1) if n>2 thenag = 8.
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Any derivation of a judgementt; 4, sM : A with M an LA-term obviously corre-
sponds to an LALs proof. Note that actually the untyped tdfngives all the structure
of the proof (assuming a convention fapeak) rules), but the types used in tliear)
rules.
If M is LALs typable then it is a valid term. We want to give a method to compute for
a valid LA-termM all its LALSs type judgements, if any. For that we associat®lta type
judgement schem&; (M) = (I'; 4) and a set of inequatiori&(M) corresponding to the
conditions expressing the validity of a derivation. The FaitM) and the seZ (M) are
defined by induction oM as below; note that they are defined up to renaming of type
variables.
o if M =x:
thenT, (M) = (x : o; &), Z(x) = 0.
o if M = J)x.M1andT;(My) = (I; B):
thenTp (M) = (4; A—B) with: A = I'(x) and4 = I'\{x} if I'(x) is defined;A = «
(fresh variable) andl = I'" otherwise.
o if M = (M1 M) andTy(M;) = (I';; A;) fori =1, 2:
thenT, (M) = (I'1, I'z; o) (o fresh variable) and (M) = Z(M1) U Z(M3) U {A1 <
(A2—oa)}.
o if M = tMgy [M1/x1,..., M, /x,] and Ty (Mg) = (x1 : A1,...,x, : Ap; B), and
T (M;) = (Fi; A;) for 1<i<n:
thenT (M) = (I'1, ..., I'y; TB) andZ(M) = U!_oZ(M;) U{A; < T A;, 1<i<n}.
o if M = [Molpy=xy,....x, aNATy (Mg) = (x1: A1, ..., x5 : Ay, 4; B), Ty (M1) = (I'; A):
thenT, (M) = (I', A; By andZ(M) = U}:OI(Mi) U{A Sla, e S Ay, 1<i <n} (Where
o is fresh).
In a similar way we consider the typing of valid LA-terms in IL. The judgements will be
denoted a$’h sM : A. The typing rules are the same as for typing ordinary lambda-terms
in IL but for the two extra rulegprom) and(contr):

IibpsMy: A1 -+ T'ybusMy, © A, x1: A1, ..., x,  AybsM @ B

Iy, ..., I'ykiisaoM [M1/xa, ..., My/x,] : B
I'tisM1:A x1:A,...,x,:A, AF sMp :

I', Abis[Molpy=xy, ..oz, = B

(prom), (1)

B
(contr).

(1) if n>2 thenag = 8.
As in the case of LALSs, to a valid LA-terrivl we associate a type judgement scheme
T; (M) = (I'; A) and a set of equatior& M) defined by
o if M =x:
thenT; (M) = (x : o; &), E(x) = 0.
o if M = Jx.MyandT;(My) = (I'; B):
thenT;(M) = (A; A—B) with A = I'(x) andA4 = I'\{x} if I'(x) is defined;A = «
(fresh variable) andl = I" otherwise.
o if M = (M1 M>) andT;(M;) = (I';; A;) fori =1, 2:
thenT; (M) = (I'1, I'2; o) (o fresh variable) and (M) = E(M1) U E(M>2) U {A1 =
(A2—oa)}.
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o if M = tTMy [My/x1,..., M, /x,] andT;(Mg) = (x1 : A1,...,x, : A,; B), and
Ti(M;) = (I';; A}) for 1<i<n:
thenT; (M) = (I'1, ..., I'y; TB) and€(M) = U'_E(M;) U {A] = A;, 1<i<n}.

o if M = [MO]M]_:X]_,..‘,X,, andT; (Mo) = (x1: A1, ..., x, 1 Ap, 4; B), Ty (My) = (I'; A):
thenT; (M) = (I', 4; B) and&(M) = UL_,E(M;) U{A = o, o = A;, 1<i <n} (where
o is fresh).

As in Section6.2for LALs or ILS typing derivations, to an LA-terrivl we can associate a

term constructiory (M) in a natural way.
Finally we have:

Proposition 23. Let M be a valid LA-term. The judgemeht-; .M : A (resp.
I'tsM @ A) is derivable iff there exists a solution of Z(M) (resp.£(M)) such that
o4 CT,0B = A,where{d, B) = T (M) (resp.{4, B) = T;(M)).

Proposition 24. The valid terms ofl; 4 admit the principal type property in ILS and the
principal type of M is given byzA4; tB) where(4; B) = T;(M) andt is the m.g.u. of
E(M).

Proof. It follows directly from the definitions of (M) and 77 (M) and the properties of
the m.g.u. O

Lemma 25. Assume M is a valid LA-term anfd-_.sM : A is its principal ILS type. Then
if t = M~ and71 = T (M), the principal type off1 is 't st : A.

Proposition 26. Let M be a valid LA-term. If M is typable in LALs then there exists
Ain LAL such thatl'+7 47.,M : A is derivable and 'l .sM : [A] is the principal type
of Min IL.

Proof. One can prove by structural induction on valid LA-terms that for lshy
if T (M) = (4; B) thenT; (M) = ([4]; [B]) and&(M) = [Z(M)].

If M is LALs typable then itis ILS typable, thus by Proposit@®bothZ (M) and€ (M)
have solutions. Then as(M) = [Z(M)], by Proposition21 if t denotes the m.g.u. of
£(M) there exists a solution of Z(M) such thaf{o] = t. Hence by PropositioA3 again,
oArparsM : oB is derivable. Moreover we hav&; (M) = ([4]; [B]) so by Proposition
24, Ty (M) = (z[4]; =[B]) is the ILS principal type oM. Finally t1[4] = [64] andz[B] =
[eB]. O

Now we can prove Propositidhil:

Proof (Propositionll). LetD be an LALs derivation of 7 414t : A. This derivation gives
an LALs type derivation for an LA-ternv, with conclusionl'Fp4;sM : A, and we have
M~ =t. LetTy = T(D); we haveT1 = T(M). Now letA-M : B be the principal ILS
type of M, then by Propositio26 there existd™”, A’ in LAL such thatl'F; s M : A’ is
derivable andI”’] = 4 and[A’] = B. This implies that"+; 47t : A" has a derivatio®’,
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with 7(D") = T (M) = T1 . Moreover by Lemma5, A+t : B is the principal type off1,
which concludes the proof.(]

Appendix C. Proof of Lemma 14
To prove Lemmad.4 we first establish another lemma:

Lemma 27. If parameterv occurs in A and rule R has a premise of the fafirr : A or

I',x: AFt : B, then

e if R = (prom) with associated parameter u and the judgement containing A is right
premise of this rule therd(v) = I(R) :: u :: k(v, A),

e otherwisel(v) = I(R) :: k(v, A).

Proof (Lemma27). Let R’ be the rule introducing andn be the number of rules between
R’ andRin the corresponding branch of the derivation tree<( 1 if Rimmediately follows
R’). Note thatz > 1 becaus& does not introduce (one of its premises contairg. We
proceed by induction on.

e If n =1then:

I[(R) ::u if R = (prom) and the conclusion ok’ is
I(R) = right premise ofR ,
I(R) otherwise.

o if R = (prom) we havel(v) = I(R’), k(v, A) = ¢, SO

I(R) ::u :: k(v, A) if R = (prom) and the conclusion ok’
I(R) = is right premise ofR,
I(R) :: k(v, A) otherwise.
o if R = (contn then:l(v) =I(R') :: !, k(v, A) = !, so the property is satisfied.
o if R = (var) then:I(v) =I(R’) :: k(v, A), so the property is valid.
e If n>2letR” be the rule immediately precedifiywith conclusion containing. Then:

I(R) = I(R) ::u if R = (prom) and the conclusion a®’ is right premise ofR ,
R otherwise.

Using the induction hypothesis @&’ and the fact thad is in the conclusion oR” we
get:l(v) = I(R") :: k(v, A), so the hypothesis is also satisfiedRy []

Proof (Lemmal4). If R = (var), (appl) or (contr) then the statement follows directly
from applying lemm&7to R, By andBa.

Otherwise ifR = (prom) then using the notations of Fig.there are am and anA
such thatB; = A} andB, = vA;. By applying Lemm&7 respectively t(RandA; and to
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RandA; we get

I(ug) = I(R) = k(uy, A}) = I(R) :: k(uz, B1),

l(u2) = I(R) ::v i k(uz, Aj) =I(R) :: k(ua, B2),
which ends the proof. [

Appendix D. Example of constraints resolution

We illustrate the use of the algorithm from 7.3 on a simple example. We consider the

following lambda-termr = (P (P Ax.x)), with P = Ay.4z.(y (y z)). Note that the term
P is the Church integer 2.

Here is one canonical term construction Roamong several possible):

zkz yo F y2
y2,2 F (yz Z) I—( )y1|')71 (appl)
1, y2, 2 F (y1 (y2 2) (abst)
T = V1, ¥2 : jz.(yl (y2 2)) (prom)
y1, y2 F Az.(y1 (32 2)) (contr)
yFiz.(y (y 2))

(prom)
yFiz.(y (y 2)) (abst)
FP

appl)

From that we give a canonical term constructiffor t:

xkx

}— e F AX.X (prom)
np

X.X
T —— =7 (prom)

FP F(P Ax.x) (appl)
F(P (P Jx.x))

Some other examples of term constructionstfcen be obtained for instance by applying
as last rule:

FP 71, 22 F (z1 (z2 Ax.x))

contr).
Ft ( )

We will consider in the following the term constructiofsand7,. They respectively have
principal types-P : (¢« — o) — (¢ — a) andtrz : (o« — o). Let us denotegf = a—oo.
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From the ILS derivation obtained frofi with its principal type we define the following
abstract derivatio; for P:

yi:foy2iBozioak (yi(y2z) o
yi:B.y2: pr2z.(y1(y22)) : B

(prom)
D= () 2ridh 2 :'qﬁijz(yl(yzz).):qﬁ (contr)
yiwpr iz G0 ab oo

y:ulwft Az.(y(yz2)) : ugp
FP:ulwf—ouqp

with constraints(1) lwph<qp.

The derivatiorD1 is actually not quite a canonical abstract derivation as we have not dec-
orated the types in (var) rules (replacing for instance an occurrentlyai (u20—ou2x)).
This is only to keep a small number of word variables for the good readability of the
example.

We denote byD] the derivatioriD; where parameters w andg have been renamed into
u', w’, ¢’ respectively. Then the following derivatidn is an abstract derivation far

xX:iokx:a
FAx.x:
D; P 7fxx b (prom)
FP:ulwf—ouqp Fix.x:vpf |
b @ F(P Jx.x):uqf (@pp)
.{]. |_P 4 /ﬂ //ﬂ '_(P; ) / ﬂ (prom)
cu'lw' f—ou lx.x) :v'u
3) < 17 (appl)

F(P (P Jx.x)) :u'qf

with constraints(2) vf<u!lwf, (3) vugf<u''w'p.Notethat, v, w,u’, v are bi-
colored variables whereag g’ are monocolored variables. The set of type constraints
CongD) is given in Fig.13 and the corresponding s&tof word constraints in Figl4.

We demonstrate the execution of the algorithm from section 78.afe give the state
of the system after line 3 of ROUND and at the end of each run of the STEP subprocedure
(Figs.15-17).

We havemesSs) = 0. The corresponding problem on integers is given in E&.The
set of solutions t& is given in Fig.19.

wB < qp w < q¢ I
v < ulwf v < ulw I

ngD) = —
(ons(D) w'p < ¢'B S Vug < u'lw’ I3
Vugp < u'w'p w < ¢ Iy

Fig. 13. Fig. 14.
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ROUND 1 ROUND 1, STEP 1
w < g Ih . w < I
- v < ulw I < ”l 1”2w I21
Sl: / N/ / 1
vug < u'low’ I3 4
w < ¢ Iy S v'ug < u 131
S1=49 == upqg < w' I3z
R1=0 ’Rg_{u_ul‘uz
P = (U3, '0) P1 = ((I21,'1))
Fig. 15.
ROUND 1, STEP 2 ROUND 2
w < ¢ I1
— w < D)
S={45>1 n v1 < w1
w' < ¢ I
/ / = v2 < uglaw I212
vup <o I3 Sy = Vg < u Ia
/
Sg={ 24 s w Iz upg < w' Iz
- v < w1 i wo< ¢ I,
v2 =< uplw Ip12 4= 0
u = uqlup -
Rz = u = uglup
’ [v = e Ra= { v = vilvp
P3=c¢ ’
3 = (212, 2))
Fig. 16.
ROUND 2, STEP 1
w < qg I1
v1 < wur I2nn
—_ i
Sg=1{vVur <X v Is1 vu;: i uq]_ I:Jil
uzq < w' Isp D
W < ¢ I o 321 jl;z ;2121
S o | v < w2 T2 ° 22 DR 5122
27 v2 < w I vt s sl
u < w I
u = uqlup ,5)1/1 2 q 1:12
Rs=4 v = vilvp -
v2 = v21lv22
Ps=c¢
Fig. 17.

From that we get a set of solutions$e, given in Fig.20(but note that it is not necessarily
the complete set of solutions). Usifs we conclude thaf is solvable and has as subset of
solutions the set given in Fig1, which gives the following possible types fo t/2t4+1p,
with 7', I1, k € N, so &' for anym € N.

An alternative way of executing the algorithm Srwould have been to start with thef
the r.h.s. ofl3 but choose as variablé instead ofu; or to start with the of the r.h.s. ofl.
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lw| = |ql lwl+1 = |ql
[v1] = |uz| [v1] = |uz]
lv21l = luz| v21l = luz|
&= lv2ol = |w] — lv2ol = |w]
[+ |ug] = |u'] [V + |ug] = |u']
luol +1g| = |w’| lugl +1g| = |w’|
| =gl w+1 = ||
Fig. 18.
k,ll,lz,l’ € N
|w| = k
g1 = k+1
lurl = |nl=04
lugl = Jva1l =12
lv22] = k
P = v
W) = I'+nh
W' =h+k+1
lq'l = la+k+2
Fig. 19.
k,ll,lz,l/ S N
k,I1,0p,1 € N e
w = vy =8k w - 8
_ gl q = gl
7 B 111802
ug = U1:§11 u = § §
up = vy =§2 v = §1g218
v/ = §1/ u' = §l/+ll
u — §l'+ll ’ J/
v = g
w' = gtk W' — gkl
L]/ — §12+k+2 , - k2
q — §2+ +
Fig. 20.
Fig. 21.
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